Diabetology International

, Volume 5, Issue 3, pp 165–174 | Cite as

Yacon supplementation reduces serum free fatty acids and tumor necrosis factor alpha concentrations in patients with type 2 diabetes

  • Hiroaki Satoh
  • Akihiro Kudoh
  • Koji Hasegawa
  • Hiroyuki Hirai
  • Tsuyoshi Watanabe
Original Article

Abstract

Yacon is a perennial plant originating from South America that forms >20 large subterranean tubers weighing from 100 to 500 g. These tubers have become popular in Japan and contain beta-1, 2-oligofructans as the main saccharides. Preliminary work in animals revealed yacon feeding ameliorates diabetes by reducing blood glucose. We therefore examined whether yacon feeding modulates glucose metabolism in patients with type 2 diabetes. We conducted a single-center, open-label, randomized controlled trial to investigate the effect of yacon on patients with type 2 diabetes. Fifty-eight patients with type 2 diabetes were selected from the medical outpatients department. There had been no changes in their diet or medications during the 3 months before the study commenced. After ethical clearance, written informed consent was obtained. Patients were randomly assigned to two groups: group 1 received an intake level of 100 g yacon/day, and group 2 received an intake level of 100 g aroid/day (control). Fasting glucose, insulin, glycated albumin, and adiponectin concentrations at baseline did not differ significantly between groups; after 5 months, concentrations did not change significantly in either group. Interestingly, after 5 months of yacon consumption, tumor necrosis factor alpha (TNF-α) and free fatty acid (FFA) concentrations decreased significantly by 10.3 % and 9.8 % (p < 0.01), respectively; neither changed significantly in the aroid group. In conclusion, the results suggest longer-term yacon supplementation may improve insulin resistance by reducing FFA and TNF-α in patients with type 2 diabetes.

Keywords

Yacon TNF-α Free fatty acids Type 2 diabetes 

Abbreviations

TNF-α

Tumor necrosis factor alpha

FFAs

Free fatty acids

LMW

Low molecular weight

MMW

Middle molecular weight

HMW

High molecular weight

FOS

β-1, 2-fructooligosaccharides

RLP-C

Remnant-like particle cholesterol

IRS-1

Insulin receptor substrate 1

References

  1. 1.
    Rask-Madsen C, Kahn CR. Tissue-specific insulin signaling, metabolic syndrome, and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2012;32:2052–9.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Satoh H, Nguyen MT, Trujillo M, Imamura T, Usui I, Scherer PE, Olefsky JM. Adenovirus-mediated adiponectin expression augments skeletal muscle insulin sensitivity in male wistar rats. Diabetes. 2005;54:1304–13.PubMedCrossRefGoogle Scholar
  3. 3.
    Satoh H, Nguyen MTA, Miles PDG, Imamura T, Usui I, Olefsky JM. Adenovirus-mediated chronic “hyper-resistinemia” leads to in vivo insulin resistance in normal rats. J Clin Invest. 2004;114:224–31.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Pajvani UB, Du X, Combs TP, Berg AH, Rajala MW, Schulthess T, Engel J, Brownlee M, Scherer PE. Structure-function studies of the adipocyte-secreted hormone acrp30/adiponectin. Implications fpr metabolic regulation and bioactivity. J Biol Chem. 2003;278:9073–85.PubMedCrossRefGoogle Scholar
  5. 5.
    Kubota N, Yano W, Kubota T, Yamauchi T, Itoh S, Kumagai H, Kozono H, Takamoto I, Okamoto S, Shiuchi T, Suzuki R, Satoh H, Tsuchida A, Moroi M, Sugi K, Noda T, Ebinuma H, Ueta Y, Kondo T, Araki E, Ezaki O, Nagai R, Tobe K, Terauchi Y, Ueki K, Minokoshi Y, Kadowaki T. Adiponectin stimulates amp-activated protein kinase in the hypothalamus and increases food intake. Cell Metab. 2007;6:55–68.PubMedCrossRefGoogle Scholar
  6. 6.
    Machii N, Satoh H, Kudoh A, Watanabe T. Resistin exacerbates insulin resistance under the condition of low adiponectin in 3t3-l1 adipocytes. J Diabetes Metab. 2012;3:230.CrossRefGoogle Scholar
  7. 7.
    Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393–403.PubMedCrossRefGoogle Scholar
  8. 8.
    Kitabchi AE, Temprosa M, Knowler WC, Kahn SE, Fowler SE, Haffner SM, Andres R, Saudek C, Edelstein SL, Arakaki R, Murphy MB, Shamoon H. Role of insulin secretion and sensitivity in the evolution of type 2 diabetes in the diabetes prevention program: effects of lifestyle intervention and metformin. Diabetes. 2005;54:2404–14.PubMedCrossRefGoogle Scholar
  9. 9.
    Valentova K, Ulrichova J. Smallanthus sonchifolius and lepidium meyenii - prospective andean crops for the prevention of chronic diseases. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2003;147:119–30.PubMedCrossRefGoogle Scholar
  10. 10.
    Yan X, Suzuki M, Ohnishi-Kameyama M, Sada Y, Nakanishi T, Nagata T. Extraction and identification of antioxidants in the roots of yacon (smallanthus sonchifolius). J Agric Food Chem. 1999;47:4711–3.PubMedCrossRefGoogle Scholar
  11. 11.
    Geyer M, Manrique I, Degen L, Beglinger C. Effect of yacon (smallanthus sonchifolius) on colonic transit time in healthy volunteers. Digestion. 2008;78:30–3.PubMedCrossRefGoogle Scholar
  12. 12.
    Genta S, Cabrera W, Habib N, Pons J, Carillo IM, Grau A, Sanchez S. Yacon syrup: beneficial effects on obesity and insulin resistance in humans. Clin Nutr. 2009;28:182–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Boden G. Role of fatty acids in the pathogenesis of insulin resistance and niddm. Diabetes. 1997;46:3–10.PubMedCrossRefGoogle Scholar
  15. 15.
    Yu C, Chen Y, Cline GW, Zhang D, Zong H, Wang Y, Bergeron R, Kim JK, Cushman SW, Cooney GJ, Atcheson B, White MF, Kraegen EW, Shulman GI. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (irs-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem. 2002;277:50230–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS. A central role for jnk in obesity and insulin resistance. Nature. 2002;420:333–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Tremblay F, Lavigne C, Jacques H, Marette A. Defective insulin-induced glut4 translocation in skeletal muscle of high fat-fed rats is associated with alterations in both akt/protein kinase b and atypical protein kinase c (zeta/lambda) activities. Diabetes. 2001;50:1901–10.PubMedCrossRefGoogle Scholar
  18. 18.
    Kim YB, Kotani K, Ciaraldi TP, Henry RR, Kahn BB. Insulin-stimulated protein kinase c lambda/zeta activity is reduced in skeletal muscle of humans with obesity and type 2 diabetes: reversal with weight reduction. Diabetes. 2003;52:1935–42.PubMedCrossRefGoogle Scholar
  19. 19.
    Peraldi P, Spiegelman B. Tnf-alpha and insulin resistance: summary and future prospects. Mol Cell Biochem. 1998;182:169–75.PubMedCrossRefGoogle Scholar
  20. 20.
    Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. Protection from obesity-induced insulin resistance in mice lacking tnf-alpha function. Nature. 1997;389:610–4.PubMedCrossRefGoogle Scholar
  21. 21.
    Hotamisligil GS, Murray DL, Choy LN, Spiegelman BM. Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc Natl Acad Sci USA. 1994;91:4854–8.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Stephens JM, Pekala PH. Transcriptional repression of the glut4 and c/ebp genes in 3t3-l1 adipocytes by tumor necrosis factor-alpha. J Biol Chem. 1991;266:21839–45.PubMedGoogle Scholar
  23. 23.
    Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259:87–91.PubMedCrossRefGoogle Scholar
  24. 24.
    Feinstein R, Kanety H, Papa MZ, Lunenfeld B, Karasik A. Tumor necrosis factor-alpha suppresses insulin-induced tyrosine phosphorylation of insulin receptor and its substrates. J Biol Chem. 1993;268:26055–8.PubMedGoogle Scholar
  25. 25.
    Begum N, Ragolia L. Effect of tumor necrosis factor-alpha on insulin action in cultured rat skeletal muscle cells. Endocrinology. 1996;137:2441–6.PubMedGoogle Scholar
  26. 26.
    Pedreschi R, Campos D, Noratto G, Chirinos R, Cisneros-Zevallos L. Andean yacon root (smallanthus sonchifolius poepp. Endl) fructooligosaccharides as a potential novel source of prebiotics. J Agric Food Chem. 2003;51:5278–84.PubMedCrossRefGoogle Scholar
  27. 27.
    Bengmark S, Martindale R. Prebiotics and synbiotics in clinical medicine. Nutr Clin Pract. 2005;20:244–61.PubMedCrossRefGoogle Scholar
  28. 28.
    Cavallini DC, Suzuki JY, Abdalla DS, Vendramini RC, Pauly-Silveira ND, Roselino MN, Pinto RA, Rossi EA. Influence of a probiotic soy product on fecal microbiota and its association with cardiovascular risk factors in an animal model. Lipids Health Dis. 2011;10:126.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, Burcelin R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57:1470–81.PubMedCrossRefGoogle Scholar
  30. 30.
    Ma TY, Iwamoto GK, Hoa NT, Akotia V, Pedram A, Boivin MA, Said HM. Tnf-alpha-induced increase in intestinal epithelial tight junction permeability requires nf-kappa b activation. Am J Physiol Gastrointest Liver Physiol. 2004;286:G367–76.PubMedCrossRefGoogle Scholar
  31. 31.
    Ye D, Ma I, Ma TY. Molecular mechanism of tumor necrosis factor-alpha modulation of intestinal epithelial tight junction barrier. Am J Physiol Gastrointest Liver Physiol. 2006;290:G496–504.PubMedCrossRefGoogle Scholar
  32. 32.
    Velez E, Castillo N, Meson O, Grau A, Bibas Bonet ME, Perdigon G. Study of the effect exerted by fructo-oligosaccharides from yacon (smallanthus sonchifolius) root flour in an intestinal infection model with salmonella typhimurium. Br J Nutr. 2013;109:1971–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Burcelin R, Garidou L, Pomie C. Immuno-microbiota cross and talk: the new paradigm of metabolic diseases. Semin Immunol. 2012;24:67–74.PubMedCrossRefGoogle Scholar

Copyright information

© The Japan Diabetes Society 2013

Authors and Affiliations

  • Hiroaki Satoh
    • 1
  • Akihiro Kudoh
    • 1
  • Koji Hasegawa
    • 1
  • Hiroyuki Hirai
    • 1
  • Tsuyoshi Watanabe
    • 1
  1. 1.Department of Nephrology, Hypertension, Diabetology, Endocrinology, and MetabolismFukushima Medical UniversityFukushima CityJapan

Personalised recommendations