Skip to main content

Advertisement

Log in

First complete genome characterization of duck plague virus from India

  • Short Communication
  • Published:
VirusDisease Aims and scope Submit manuscript

Abstract

In this study, we report the complete genome sequencing of the Duck plague virus from India for the first time. The sequencing was done on the MinION nanopore sequencer from Oxford Nanopore Technologies. The closest relative is the European strain 2085v, with 99.98 and 99.8% identity at the amino acid and nucleotide level respectively. Moreover, 72 out of 77 ORFs are completely conserved between the 2 strains. The high similarity with the European strain over the only three other pathogenic strains reported from China points to the circulation of European strain in India. The fly pathways of migratory birds and co-habitation with native species being a probable reason. More complete genome data from diverse sampling locations are needed to characterize the genomic features, develop diagnostics, vaccines, and understand the evolution of the virus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Burgess EC, Ossa J, Yuill TM. Duck plague: A carrier state in waterfowl. Avian Dis. American Association of Avian Pathologists, Allen Press; 1979. 23:940–9. Available from: http://www.jstor.org/stable/1589610.

  2. Burgess EC, Yuill TM. Vertical transmission of duck plague virus (DPV) by apparently healthy DPV carrier waterfowl. Avian Dis. 1981;25:795–800.

    Article  CAS  Google Scholar 

  3. Cheng A, Zhang S, Zhang X, Wang M, Zhu D, Jia R, et al. Prokaryotic expression and characteristics of duck enteritis virus UL29 gene. Acta Virol. 2012;56:293–304.

    Article  CAS  Google Scholar 

  4. Dhama K, Kumar N, Saminathan M, Tiwari R, Karthik K, Asok Kumar M, et al. Duck virus enteritis (Duck plague) - A comprehensive update. Vet Q. 2017;37:57–80. https://doi.org/10.1080/01652176.2017.1298885.

    Article  PubMed  Google Scholar 

  5. Hansen WR, Gough RE. Duck plague (duck virus enteritis). Infect Dis Wild Birds. Wiley; 2007. p. 87–107. https://doi.org/10.1002/9780470344668.ch4

  6. Kaleta EF, Kuczka A, Kühnhold A, Bunzenthal C, Bönner BM, Hanka K, et al. Outbreak of duck plague (duck herpesvirus enteritis) in numerous species of captive ducks and geese in temporal conjunction with enforced biosecurity (in-house keeping) due to the threat of avian influenza A virus of the subtype Asia H5N1. Dtsch Tierarztl Wochenschr Germany. 2007;114:3–11.

    CAS  Google Scholar 

  7. Kevin Keel M, Stallknecht D, Cobb D, Cunningham M, Goekjian V, Gordon-Akhvlediani S, et al. The epizootiology of anatid herpesvirus 1 infection in free-flying waterfowl: A comparison of latent and active infections among native waterfowl, captive-reared released ducks, and peridomestic or feral ducks. J Wildl Dis. 2013;49:486–91.

    Article  Google Scholar 

  8. Lee LF, Silva RF, Cui X, Zhang H, Heidari M, Reddy SM. Characterization of LORF11, a unique gene common to the three marek’s disease virus serotypes. Avian Dis. 2007;51:851–7.

    Article  Google Scholar 

  9. Li Y, Wu Y, Wang M, Ma Y, Jia R, Chen S, et al. Duplicate US1 genes of duck enteritis virus encode a non-essential immediate early protein localized to the nucleus. Front Cell Infect Microbiol. 2020;9:463.

    Article  Google Scholar 

  10. Liu X, Han Z, Shao Y, Yu D, Li H, Wang Yu, et al. Identification of a novel linear B-cell epitope in the UL26 and UL26.5 proteins of duck enteritis virus. Virol J. 2010;7:233.

    Article  Google Scholar 

  11. Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods. 2015;12:733–5.

    Article  CAS  Google Scholar 

  12. Mukerji A, Das MS, Ghosh BB, Ganguly JL. Duck plague in West Bengal. 3. Indian Vet J. India; 1965;42:811–5.

  13. Neher S, Barman NN, Bora DP, Deka D, Tamuly S, Deka P, et al. Detection and isolation of Duck Plague virus from field outbreaks in Assam. India Indian J Anim Res. 2019;53:790–8.

    Google Scholar 

  14. Pazhanivel N, Rajeswar J, Ramprabhu R, Manoharan S, Bala MA, Balachandran C, et al. Duck plague outbreak in a Chara-Chemballi duck farm. Iran J Vet Res. 2019;20:308–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Shawky S, Schat KA. Latency sites and reactivation of duck enteritis virus. Avian Dis. 2002;46:308–13.

    Article  Google Scholar 

  16. Stoute ST, Tsai H-J, Metwally SA, Cheng A, Guérin J-L, Palya VJ. Viral infections of waterfowl. In: Dis Poult. Wiley; 2020. p. 446–97. https://doi.org/10.1002/9781119371199.ch13.

  17. Walenz BP, Koren S, Bergman NH, Phillippy AM, Miller JR, Berlin K. Canu: Scalable and accurate long-read assembly via adaptive k -mer weighting and repeat separation. Genome Res. 2017;27:722–36.

    Article  Google Scholar 

  18. Wang J, Höper D, Beer M, Osterrieder N. Complete genome sequence of virulent duck enteritis virus (DEV) strain 2085 and comparison with genome sequences of virulent and attenuated DEV strains. Virus Res. 2011;160:316–25. https://doi.org/10.1016/j.virusres.2011.07.004.

    Article  CAS  PubMed  Google Scholar 

  19. Wu Y, Cheng A, Wang M, Zhu D, Jia R, Chen S, et al. Comparative genomic analysis of duck enteritis virus strains. J Virol. 2012;86:13841–2.

    Article  CAS  Google Scholar 

  20. Yang C, Li Q, Li J, Zhang G, Li H, Xia Y, et al. Comparative genomic sequence analysis between a standard challenge strain and a vaccine strain of duck enteritis virus in China. Virus Genes. 2014;48:296–303.

    Article  CAS  Google Scholar 

  21. Zhang B, Huang X, Yang Y, Zhang M, Song Y, Yang C. Complete genome sequence of an isolate of duck enteritis virus from China. Arch Virol. 2020;165:1687–9. https://doi.org/10.1007/s00705-020-04594-7.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao C, He T, Xu Y, Wang M, Cheng A, Zhao X, et al. Molecular characterization and antiapoptotic function analysis of the duck plague virus Us5 gene. Sci Rep. 2019;9:4851.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Director, ICAR-National Institute of High Security Animal Diseases for providing necessary facilities to carry out this work. We also appreciate the assistance provided by Mr. Bharat Ram Lodhi, Supervisor SPF Unit, ICAR-National Institute of High Security Animal Diseases for carrying out the experiments.

Funding

This research was funded by Department of Biotechnology, Government of India, Grant Number DBT-NER/LIVS/11/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwin A. Raut.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aasdev, A., Pawar, S.D., Mishra, A. et al. First complete genome characterization of duck plague virus from India. VirusDis. 32, 789–796 (2021). https://doi.org/10.1007/s13337-021-00748-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13337-021-00748-6

Keyword

Navigation