Advertisement

VirusDisease

, Volume 30, Issue 2, pp 201–206 | Cite as

Prevalence of poliovirus vaccine strains in randomized stool samples from 2010 to 2018: encompassing transition from the trivalent to bivalent oral poliovirus vaccine

  • Jira Chansaenroj
  • Watchaporn Chuchaona
  • Thanundorn Thanusuwannasak
  • Ausanee Duang-in
  • Jiratchaya Puenpa
  • Viboonsak Vutithanachot
  • Sompong Vongpunsawad
  • Yong PoovorawanEmail author
Original Article

Abstract

Global eradication of poliovirus (PV) has previously relied on the live attenuated oral poliovirus vaccine (OPV). However, in order to eliminate the risk of vaccine-associated paralytic poliomyelitis, the use of OPV will soon be discontinued. Thailand has introduced inactivated polio vaccine since December 2015 and replaced trivalent with bivalent OPV since April 2016. To provide crucial surveillance data during this polio vaccine transition period, poliovirus shedding in stool was performed. A total of 7446 stool samples between 2010 and September 2018 were tested for poliovirus using reverse-transcription polymerase chain reaction. Approximately 0.44% (33/7446) of the samples tested were positive for PV. All positive specimens had more than 99% homology with the Sabin vaccine strain, based on complete VP1 nucleotide sequences. Although trivalent OPV use has been discontinued in Thailand since April 2016, PV type 2 could be detected in stool samples collected in May 2016 but has not been found afterwards. The use of bivalent OPV was able to reduce PV type 2 shedding in stools and could contribute to the reduction of vaccine-associated paralytic poliomyelitis in Thai children.

Keywords

Enterovirus Inactivated polio vaccine Poliovirus Stool Thailand 

Notes

Acknowledgements

We are grateful to the staff of the Center of Excellence in Clinical Virology for their technical and administrative assistance. This work was supported by The Research Chair Grant from the National Science and Technology Development Agency (P-15-50004), and The Center of Excellence in Clinical Virology, Chulalongkorn University, and King Chulalongkorn Memorial Hospital (GCE 59-009-30-005). The Rachadapisek Sompote Fund for Postdoctoral Fellowship (Chulalongkorn University) and Thailand Research Fund also supported this research through the Royal Golden Jubilee Ph.D. Program to Jira Chansaenroj (PHD/0196/2556).

Compliance with ethical standards

Conflict of interest

None of the authors have any conflicts of interest to declare.

References

  1. 1.
    Adams A, Salisbury DM. Eradicating polio. Science. 2015;350(6261):609.  https://doi.org/10.1126/science.aad7294.CrossRefGoogle Scholar
  2. 2.
    Akil L, Ahmad HA. The recent outbreaks and reemergence of poliovirus in war and conflict-affected areas. Int J Infect Dis. 2016;49:40–6.  https://doi.org/10.1016/j.ijid.2016.05.025.CrossRefGoogle Scholar
  3. 3.
    Bahl S, Hasman A, Eltayeb AO, James Noble D, Asia Thapa A. The switch from trivalent to bivalent oral poliovirus vaccine in the south-east region. J Infect Dis. 2017;216(suppl_1):S94–100.  https://doi.org/10.1093/infdis/jiw602.CrossRefGoogle Scholar
  4. 4.
    Bandyopadhyay AS, Garon J, Seib K, Orenstein WA. Polio vaccination: past, present and future. Future Microbiol. 2015;10(5):791–808.  https://doi.org/10.2217/fmb.15.19.CrossRefGoogle Scholar
  5. 5.
    Bonnet MC, Dutta A. World wide experience with inactivated poliovirus vaccine. Vaccine. 2008;26(39):4978–83.  https://doi.org/10.1016/j.vaccine.2008.07.026.CrossRefGoogle Scholar
  6. 6.
    Chansaenroj J, Tuanthap S, Thanusuwannasak T, Duang-In A, Klinfueng S, Thaneskongtong N, et al. Human enteroviruses associated with and without diarrhea in Thailand between 2010 and 2016. PLoS ONE. 2017;12(7):e0182078.  https://doi.org/10.1371/journal.pone.0182078.CrossRefGoogle Scholar
  7. 7.
    Delport W, Poon AF, Frost SD, Kosakovsky Pond SL. Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics. 2010;26(19):2455–7.  https://doi.org/10.1093/bioinformatics/btq429.CrossRefGoogle Scholar
  8. 8.
    Dowdle WR, De Gourville E, Kew OM, Pallansch MA, Wood DJ. Polio eradication: the OPV paradox. Rev Med Virol. 2003;13(5):277–91.  https://doi.org/10.1002/rmv.401.CrossRefGoogle Scholar
  9. 9.
    El-Sayed N, El-Gamal Y, Abbassy AA, Seoud I, Salama M, Kandeel A, et al. Monovalent type 1 oral poliovirus vaccine in newborns. N Engl J Med. 2008;359(16):1655–65.  https://doi.org/10.1056/nejmoa0800390.CrossRefGoogle Scholar
  10. 10.
    Endegue-Zanga MC, Sadeuh-Mba SA, Iber J, Burns CC, Moeletsi NG, Baba M, et al. Importation and outbreak of wild polioviruses from 2000 to 2014 and interruption of transmission in Cameroon. J Clin Virol. 2016;79:18–24.  https://doi.org/10.1016/j.jcv.2016.03.025.CrossRefGoogle Scholar
  11. 11.
    Garg A, Pattamadilok S, Bahl S. Successes and challenges of expansion of environmental poliovirus surveillance in the WHO South-East Asia Region. WHO South East Asia J Public Health. 2018;7(2):122–8.  https://doi.org/10.4103/2224-3151.239424.CrossRefGoogle Scholar
  12. 12.
    Guo J, Bolivar-Wagers S, Srinivas N, Holubar M, Maldonado Y. Immunodeficiency-related vaccine-derived poliovirus (iVDPV) cases: a systematic review and implications for polio eradication. Vaccine. 2015;33(10):1235–42.  https://doi.org/10.1016/j.vaccine.2015.01.018.CrossRefGoogle Scholar
  13. 13.
    Jorba J, Diop OM, Iber J, Henderson E, Zhao K, Sutter RW, et al. Update on vaccine-derived polioviruses—worldwide, January 2017-June 2018. MMWR Morb Mortal Wkly Rep. 2018;67(42):1189–94.  https://doi.org/10.15585/mmwr.mm6742a5.CrossRefGoogle Scholar
  14. 14.
    Kew O, Morris-Glasgow V, Landaverde M, Burns C, Shaw J, Garib Z, et al. Outbreak of poliomyelitis in Hispaniola associated with circulating type 1 vaccine-derived poliovirus. Science. 2002;296(5566):356–9.  https://doi.org/10.1126/science.1068284.CrossRefGoogle Scholar
  15. 15.
    Kilpatrick DR, Iber JC, Chen Q, Ching K, Yang SJ, De L, et al. Poliovirus serotype-specific VP1 sequencing primers. J Virol Methods. 2011;174(1–2):128–30.  https://doi.org/10.1016/j.jviromet.2011.03.020.CrossRefGoogle Scholar
  16. 16.
    Kosalaraksa P, Chokephaibulkit K, Benjaponpitak S, Pancharoen C, Chuenkitmongkol S, B’Chir S, et al. Persistence of hepatitis B immune memory until 9–10 years of age following hepatitis B vaccination at birth and DTaP-IPV-HB-PRP approximately T vaccination at 2, 4 and 6 months. Hum Vaccin Immunother. 2018;14(5):1257–65.  https://doi.org/10.1080/21645515.2018.1426418.CrossRefGoogle Scholar
  17. 17.
    Linsuwanon P, Payungporn S, Samransamruajkit R, Posuwan N, Makkoch J, Theanboonlers A, et al. High prevalence of human rhinovirus C infection in Thai children with acute lower respiratory tract disease. J Infect. 2009;59(2):115–21.  https://doi.org/10.1016/j.jinf.2009.05.009.CrossRefGoogle Scholar
  18. 18.
    O’Connor PM, Allison R, Thapa A, Bahl S, Chunsuittiwat S, Hasan M, et al. Update on polio eradication in the World Health Organization South-East Asia Region, 2013. J Infect Dis. 2014;210(Suppl 1):S216–24.  https://doi.org/10.1093/infdis/jit585.CrossRefGoogle Scholar
  19. 19.
    O’Reilly KM, Lamoureux C, Molodecky NA, Lyons H, Grassly NC, Tallis G. An assessment of the geographical risks of wild and vaccine-derived poliomyelitis outbreaks in Africa and Asia. BMC Infect Dis. 2017;17(1):367.  https://doi.org/10.1186/s12879-017-2443-4.CrossRefGoogle Scholar
  20. 20.
    Patel M, Cochi S. Addressing the challenges and opportunities of the polio endgame: lessons for the future. J Infect Dis. 2017;216(suppl_1):S1–8.  https://doi.org/10.1093/infdis/jix117.CrossRefGoogle Scholar
  21. 21.
    Platt LR, Estivariz CF, Sutter RW. Vaccine-associated paralytic poliomyelitis: a review of the epidemiology and estimation of the global burden. J Infect Dis. 2014;210(Suppl 1):S380–9.  https://doi.org/10.1093/infdis/jiu184.CrossRefGoogle Scholar
  22. 22.
    Puenpa J, Suwannakarn K, Chansaenroj J, Vongpunsawad S, Poovorawan Y. Development of single-step multiplex real-time RT-PCR assays for rapid diagnosis of enterovirus 71, coxsackievirus A6, and A16 in patients with hand, foot, and mouth disease. J Virol Methods. 2017;248:92–9.  https://doi.org/10.1016/j.jviromet.2017.06.013.CrossRefGoogle Scholar
  23. 23.
    Racaniello VR. One hundred years of poliovirus pathogenesis. Virology. 2006;344(1):9–16.  https://doi.org/10.1016/j.virol.2005.09.015.CrossRefGoogle Scholar
  24. 24.
    Shrivastava A, Gupta N, Upadhyay P, Puliyel J. Caution needed in using oral polio vaccine beyond the cold chain: vaccine vial monitors may be unreliable at high temperatures. Indian J Med Res. 2012;135(4):520–2.Google Scholar
  25. 25.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731–9.  https://doi.org/10.1093/molbev/msr121.CrossRefGoogle Scholar
  26. 26.
    Thongcharoen P. Viral diseases in Thailand. J Infect Dis Antimicrob Agents. 1988;5(4):196–204.Google Scholar
  27. 27.
    Zaffran M, McGovern M, Hossaini R, Martin R, Wenger J. The polio endgame: securing a world free of all polioviruses. Lancet. 2018;391(10115):11–3.  https://doi.org/10.1016/S0140-6736(17)32442-X.CrossRefGoogle Scholar
  28. 28.
    Zhang Q, Leppold C, Shao Y, Mura Y, Tanimoto T. New poliovirus vaccine schedules. Lancet. 2016;388(10059):2477–8.  https://doi.org/10.1016/S0140-6736(16)32177-8.CrossRefGoogle Scholar

Copyright information

© Indian Virological Society 2019

Authors and Affiliations

  • Jira Chansaenroj
    • 1
  • Watchaporn Chuchaona
    • 1
  • Thanundorn Thanusuwannasak
    • 1
  • Ausanee Duang-in
    • 1
  • Jiratchaya Puenpa
    • 1
  • Viboonsak Vutithanachot
    • 2
  • Sompong Vongpunsawad
    • 1
  • Yong Poovorawan
    • 1
    Email author
  1. 1.Center of Excellence in Clinical Virology, Faculty of MedicineChulalongkorn UniversityBangkokThailand
  2. 2.Chum Phae HospitalChum Phae, Khon KaenThailand

Personalised recommendations