Advertisement

VirusDisease

, Volume 28, Issue 2, pp 189–199 | Cite as

Molecular characterization and phylogenetic analyses of virulent infectious bronchitis viruses isolated from chickens in Eastern Saudi Arabia

  • Maged Gomaa HemidaEmail author
  • Mohammed A. Al-Hammadi
  • Abdul Hafeed S. Daleb
  • Cecilio R. Gonsalves
Original Article

Abstract

Infectious bronchitis virus (IBV) is one of the major respiratory viral threats for chickens. Despite the intensive application of IBV vaccines, several outbreaks have been reported worldwide. Here, we report several IBV outbreaks in thirteen poultry farms in Eastern Saudi Arabia (ESA) from 2013 to 2014. The main goals of the current study were as follows: (1) isolation and molecular characterization of the currently circulating strains in ESA (Al-Hasa, Dammam, and Buqayq) and (2) evaluation of the immune status of these birds to IBV. To achieve our goals, tissue specimens (trachea, lungs, liver, kidney and cecal tonsils) and sera were collected. High morbidity up to 100% and mortality ranging from 18 to 90% were reported. Severe infection was observed in the trachea, bronchi, and kidneys of the infected birds. IBV strains were isolated using embryonated chicken eggs. The isolated viruses induced hemorrhage, dwarfing and death of the inoculated embryos 3–5 days post-infection. The circulating IBV strains were identified by sequencing the partial IBV-N and IBV-S1 genes. These viruses showed 95% sequence identity to Indian, Italian, Egyptian and Chinese strains and were quite distinct from the locally used vaccines on the genomic level. Interestingly, high antibody titers against IBV were reported in some of these farms, suggesting the presence of new virulent strains in ESA. The seroconversion of infected birds was reported among the affected flocks. In conclusion, very virulent IBV strains are currently circulating in ESA. Further studies are currently in progress to molecularly characterize these IBV strains.

Keywords

ELISA Eastern Saudi Arabia Infectious bronchitis virus PCR 

Notes

Acknowledgements

This work was supported by the King Faisal University Deanship of research Grant No. (142017). We also than Mr. Ahmed Alkhars with his laboratory technical helps during the virus isolation and pathogenicity index.

Supplementary material

Supplementary material 1 (M4V 34962 kb)

Supplementary material 2 (M4V 15846 kb)

Supplementary material 3 (M4V 18631 kb)

Supplementary material 4 (MP4 21623 kb)

Supplementary material 5 (M4V 2079 kb)

13337_2017_375_MOESM6_ESM.tif (3 mb)
Supplementary material 6 Map showing the geographic coordinates of the farms and bird sampling. A map showing the geographical locations of the farms under study in Eastern Saudi Arabia. The farms are located around three major cities in ESA (Al-Ahsa (Al-Hofuf), Dammam and Buqayq). A circle highlighted the location of these farms in ESA (TIFF 3088 kb)
13337_2017_375_MOESM7_ESM.docx (20 kb)
Supplementary material 7(DOCX 20 kb)

References

  1. 1.
    Ababneh M, Dalab AE, Alsaad S, Al-Zghoul M. Presence of infectious bronchitis virus strain CK/CH/LDL/97I in the Middle East. ISRN Vet Sci. 2012;2012:201721. doi: 10.5402/2012/201721.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Abdel-Moneim AS, El-Kady MF, Ladman BS, Gelb J. S1 gene sequence analysis of a nephropathogenic strain of avian infectiousbronchitis virus in Egypt. Virology. 2006;3:78.CrossRefGoogle Scholar
  3. 3.
    Abdel-Moneim AS, Zlotowski P, Veits J, Keil GM, Teifke JP. Immunohistochemistry for detection of avian infectious bronchitis virus strain M41 in the proventriculus and nervous system of experimentally infected chicken embryos. Virol J. 2009;6:15. doi: 10.1186/1743-422X-6-15.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Acevedo AM, Perera CL, Vega A, Rios L, Coronado L, Relova D, et al. A duplex SYBR Green I-based real-time RT-PCR assay for the simultaneous detection and differentiation of Massachusetts and non-Massachusetts serotypes of infectious bronchitis virus. Mol Cell Probes. 2013;27(5–6):184–92. doi: 10.1016/j.mcp.2013.06.001.CrossRefPubMedGoogle Scholar
  5. 5.
    Atkins KE, Read AF, Walkden-Brown SW, Savill NJ, Woolhouse ME. The effectiveness of mass vaccination on Marek’s disease virus (MDV) outbreaks and detection within a broiler barn: a modeling study. Epidemics. 2013;5(4):208–17. doi: 10.1016/j.epidem.2013.10.001.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bronzoni RV, Fatima M, Montassier S, Pereira GT, Gama NM, Sakai V, et al. Detection of infectious bronchitis virus and specific anti-viral antibodies using a Concanavalin A-Sandwich-ELISA. Viral Immunol. 2005;18(3):569–78. doi: 10.1089/vim.2005.18.569.CrossRefPubMedGoogle Scholar
  7. 7.
    Chacon JL, Rodrigues JN, Assayag Junior MS, Peloso C, Pedroso AC, Ferreira AJ. Epidemiological survey and molecular characterization of avian infectious bronchitis virus in Brazil between 2003 and 2009. Avian Pathol. 2011;40(2):153–62. doi: 10.1080/03079457.2010.544641.CrossRefPubMedGoogle Scholar
  8. 8.
    Choi KS, Lee EK, Jeon WJ, Park MJ, Kim JW, Kwon JH. Pathogenicity and antigenicity of a new variant of Korean nephropathogenic infectious bronchitis virus. J Vet Sci. 2009;10(4):357–9.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    de Geus ED, van Haarlem DA, Poetri ON, de Wit JJ, Vervelde L. A lack of antibody formation against inactivated influenza virus after aerosol vaccination in presence or absence of adjuvantia. Vet Immunol Immunopathol. 2011;143(1–2):143–7. doi: 10.1016/j.vetimm.2011.05.023.CrossRefPubMedGoogle Scholar
  10. 10.
    De Wit JJ. Detection of infectious bronchitis virus. Avian Pathol. 2000;29(2):71–93. doi: 10.1080/03079450094108.CrossRefPubMedGoogle Scholar
  11. 11.
    Dhama K, Singh SD, Barathidasan R, Desingu PA, Chakraborty S, Tiwari R, et al. Emergence of Avian Infectious Bronchitis Virus and its variants need better diagnosis, prevention and control strategies: a global perspective. Pak J Biol Sci. 2014;17(6):751–67.CrossRefPubMedGoogle Scholar
  12. 12.
    Dhinakar Raj G, Suresh Kumar K, Nainar AM, Nachimuthu K. Egg: embryo weight ratio as an indicator of dwarfism induced by infectious bronchitis virus. Avian Pathol. 2004;33(3):307–9. doi: 10.1080/0307945042000205883.CrossRefPubMedGoogle Scholar
  13. 13.
    Eladl AH, Hamed HR, Khalil MR. Consequence of Cryptosporidiosis on the immune response of vaccinated broiler chickens against Newcastle disease and/or avian influenza. Vet Res Commun. 2014;38(3):237–47. doi: 10.1007/s11259-014-9610-5.CrossRefPubMedGoogle Scholar
  14. 14.
    Fan WQ, Wang HN, Zhang Y, Guan ZB, Wang T, Xu CW, et al. Comparative dynamic distribution of avian infectious bronchitis virus M41, H120, and SAIBK strains by quantitative real-time RT-PCR in SPF chickens. Biosci Biotechnol Biochem. 2012;76(12):2255–60.CrossRefPubMedGoogle Scholar
  15. 15.
    Fellahi S, El Harrak M, Ducatez M, Loutfi C, Koraichi SI, Kuhn JH, et al. Phylogenetic analysis of avian infectious bronchitis virus S1 glycoprotein regions reveals emergence of a new genotype in Moroccan broiler chicken flocks. Virol J. 2015;12:116. doi: 10.1186/s12985-015-0347-8.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Feng J, Hu Y, Ma Z, Yu Q, Zhao J, Liu X, et al. Virulent avian infectious bronchitis virus, People’s Republic of China. Emerg Infect Dis. 2012;18(12):1994–2001. doi: 10.3201/eid1812.120552.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Gelb J Jr, Wolff JB, Moran CA. Variant serotypes of infectious bronchitis virus isolated from commercial layer and broiler chickens. Avian Dis. 1991;35(1):82–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Guy JS. Isolation and propagation of coronaviruses in embryonated eggs. Methods Mol Biol. 2015;1282:63–71. doi: 10.1007/978-1-4939-2438-7_7.CrossRefPubMedGoogle Scholar
  19. 19.
    Hemida Maged Gomaa. Barta JR, Ojkic D, Yoo D. Complete genomic sequence of turkey coronavirus. Virus Res. 2008;135(2):237–46. doi: 10.1016/j.virusres.2008.03.020.CrossRefGoogle Scholar
  20. 20.
    Hemida MG, Perera RA, Wang P, Alhammadi MA, Siu LY, Li M, et al. Middle East Respiratory Syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010–2013. Euro Surveill. 2013;18(50):20659.CrossRefPubMedGoogle Scholar
  21. 21.
    Ignjatovic J, Ashton DF, Reece R, Scott P, Hooper P. Pathogenicity of Australian strains of avian infectious bronchitis virus. J Comp Pathol. 2002;126(2–3):115–23. doi: 10.1053/jcpa.2001.0528.CrossRefPubMedGoogle Scholar
  22. 22.
    Jackwood MW, Boynton TO, Hilt DA, McKinley ET, Kissinger JC, Paterson AH, et al. Emergence of a group 3 coronavirus through recombination. Virology. 2010;398(1):98–108. doi: 10.1016/j.virol.2009.11.044.CrossRefPubMedGoogle Scholar
  23. 23.
    Ji J, Xie J, Chen F, Shu D, Zuo K, Xue C, et al. Phylogenetic distribution and predominant genotype of the avian infectious bronchitis virus in China during 2008-2009. Virol J. 2011;8:184. doi: 10.1186/1743-422X-8-184.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Jones RM, et al. Development and validation of RT-PCR tests for the detection and S1 genotyping of infectious bronchitis virus and other closely related gammacoronaviruses within clinical samples. Transbound. Emerg. Dis. 2011;58(5):411–20.CrossRefPubMedGoogle Scholar
  25. 25.
    Kim JK, Kayali G, Walker D, Forrest HL, Ellebedy AH, Griffin YS, et al. Puzzling inefficiency of H5N1 influenza vaccines in Egyptian poultry. Proc Natl Acad Sci U S A. 2010;107(24):11044–9. doi: 10.1073/pnas.1006419107.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Li M, Wang XY, Wei P, Chen QY, Wei ZJ, Mo ML. Serotype and genotype diversity of infectious bronchitis viruses isolated during 1985-2008 in Guangxi. China Arch Virol. 2012;157(3):467–74. doi: 10.1007/s00705-011-1206-6.CrossRefPubMedGoogle Scholar
  27. 27.
    Lim TH, Lee HJ, Lee DH, Lee YN, Park JK, Youn HN, et al. An emerging recombinant cluster of nephropathogenic strains of avian infectious bronchitis virus in Korea. Infect Genet Evol. 2011;11(3):678–85. doi: 10.1016/j.meegid.2011.01.007.CrossRefPubMedGoogle Scholar
  28. 28.
    Mahmood ZH, Sleman RR, Uthman AU. Isolation and molecular characterization of Sul/01/09 avian infectious bronchitis virus, indicates the emergence of a new genotype in the Middle East. Vet Microbiol. 2011;150(1–2):21–7. doi: 10.1016/j.vetmic.2010.12.015.CrossRefPubMedGoogle Scholar
  29. 29.
    Mardani K, Noormohammadi AH, Hooper P, Ignjatovic J, Browning GF. Infectious bronchitis viruses with a novel genomic organization. J Virol. 2008;82(4):2013–24.CrossRefPubMedGoogle Scholar
  30. 30.
    Reichmann KG, Barram KM, Brock IJ, Standfast NF. Effects of regular handling and blood sampling by wing vein puncture on the performance of broilers and pullets. Br Poult Sci. 1978;19(1):97–9. doi: 10.1080/00071667808416448.CrossRefPubMedGoogle Scholar
  31. 31.
    Roh HJ, Hilt DA, Williams SM, Jackwooda MW. Evaluation of infectious bronchitis virus Arkansas-type vaccine failure in commercial broilers. Avian Dis. 2013;57(2):248–59. doi: 10.1637/10459-112812-Reg.1.CrossRefPubMedGoogle Scholar
  32. 32.
    Sharma JM. Introduction to poultry vaccines and immunity. Adv Vet Med. 1999;41:481–94.CrossRefPubMedGoogle Scholar
  33. 33.
    Shen S, Law YC, Liu DX. A single amino acid mutation in the spike protein of coronavirus infectious bronchitis virus hampers its maturation and incorporation into virions at the nonpermissive temperature. Virology. 2004;326(2):288–98. doi: 10.1016/j.virol.2004.06.016.CrossRefPubMedGoogle Scholar
  34. 34.
    Spickett AM, De Klerk D, Enslin CB, Scholtz MM. Resistance of Nguni, Bonsmara and Hereford cattle to ticks in a Bushveld region of South Africa. Onderstepoort J Vet Res. 1989;56(4):245–50.PubMedGoogle Scholar
  35. 35.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9. doi: 10.1093/molbev/mst197.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Tarpey I, Orbell SJ, Britton P, Casais R, Hodgson T, Lin F, et al. Safety and efficacy of an infectious bronchitis virus used for chicken embryo vaccination. Vaccine. 2006;24(47–48):6830–8. doi: 10.1016/j.vaccine.2006.06.040..CrossRefPubMedGoogle Scholar
  37. 37.
    Toro H, Pennington D, Gallardo RA, van Santen VL, van Ginkel FW, Zhang J, et al. Infectious bronchitis virus subpopulations in vaccinated chickens after challenge. Avian Dis. 2012;56(3):501–8. doi: 10.1637/9982-110811-Reg.1.CrossRefPubMedGoogle Scholar
  38. 38.
    Yan F, Zhao Y, Hu Y, Qiu J, Lei W, Ji W, et al. Protection of chickens against infectious bronchitis virus with a multivalent DNA vaccine and boosting with an inactivated vaccine. J Vet Sci. 2013;14(1):53–60.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367(19):1814–20. doi: 10.1056/NEJMoa1211721.CrossRefPubMedGoogle Scholar
  40. 40.
    Zhang J, Guo Y, Xiao Y, Wang X, Li Z, Hu S, et al. A simple and rapid strip test for detection of antibodies to avian infectious bronchitis virus. J Vet Med Sci. 2010;72(7):883–6.CrossRefPubMedGoogle Scholar
  41. 41.
    Zhao G, Jiang Y, Qiu H, Gao T, Zeng Y, Guo Y, et al. Multi-organ damage in human dipeptidyl peptidase 4 transgenic mice infected with middle east respiratory syndrome-coronavirus. PLoS ONE. 2015;10(12):e0145561. doi: 10.1371/journal.pone.0145561.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Indian Virological Society 2017

Authors and Affiliations

  • Maged Gomaa Hemida
    • 1
    • 2
    Email author
  • Mohammed A. Al-Hammadi
    • 1
  • Abdul Hafeed S. Daleb
    • 1
  • Cecilio R. Gonsalves
    • 1
  1. 1.Department of Microbiology and Parasitology, College of Veterinary MedicineKing Faisal UniversityAl-AhsaSaudi Arabia
  2. 2.Department of Virology, Faculty of Veterinary MedicineKafrelsheikh UniversityKafrelsheikhEgypt

Personalised recommendations