, Volume 27, Issue 4, pp 382–386 | Cite as

Isolation and phylogenetic characterization of haemagglutinin and neuraminidase genes of H9N2 low pathogenicity avian influenza virus isolated from commercial layers in India

  • Vasudevan GowthamanEmail author
  • Shambu Dayal Singh
  • Kuldeep Dhama
  • Palani Srinivasan
  • Sellappan Saravanan
  • Thippichettypalayam Ramasamy Gopala Krishna Murthy
  • Kuppanan Sukumar
  • Basavaraj Mathapati
  • Camille Lebarbenchon
  • Yashpal Singh Malik
  • Muthannan Andavar Ramakrishnan
Original Article


Avian influenza is a highly infectious and dynamically evolving disease of birds causing high morbidity and mortality. It is caused by avian influenza virus (AIV) that belongs to the family Orthomyxoviridae. Two types of AIV have been described based on their pathogenicity viz. highly pathogenic avian influenza virus that causes severe disease with high mortality and low pathogenic avian influenza virus (LPAI) that generally causes asymptomatic infection or a mild disease. The H9N2 subtype is the widely circulated LPAI type in the world. The H9N2 subtype of was first reported from northern India in March 2003. However, systematical surveillance information for the evolution of H9N2 viruses in poultry flocks of Southern India is lacking. The present study reports the isolation and characterization of H9N2 isolates from the southern parts of the country during the period between May 2010 and September 2011. Out of the 30 poultry flocks investigated, six were found to be positive for HA activity. Further, all the six samples conformed as AIV. Partial nucleotide sequencing of the HA and NA genes revealed that all were belonging to the H9N2 subtype. Phylogenetically, the HA and NA genes of the H9N2 viruses from India clustered with those isolated from Bangladesh, Pakistan and the Middle East, although we were not able to conclude on their exact geographic origin.


LPAI-H9N2 Haemagglutinin Neuraminidase Characterization India 



Authors are thankful to the Director IVRI for providing facilities and funds for carrying out the study.

Supplementary material

13337_2016_350_MOESM1_ESM.png (2.9 mb)
Fig S1 Detailed maximum likelihood consensus tree derived from 178 H9 Influenza A virus hemagglutinin nucleotide sequences. Computations were realized with the GTR + I + α evolutionary model (I = 0.42; α = 1.13). Blue branches highlight viruses isolated in India. Sequences generated in this study and corresponding accession numbers are indicated in bold. Red dots indicated bootstrap values higher than 80 (PNG 2934 kb)
13337_2016_350_MOESM2_ESM.png (2.6 mb)
Fig S2 Detailed maximum likelihood consensus tree derived from 160 N2 Influenza A virus neuraminidase nucleotide sequences. Computations were realized with the GTR + I + α evolutionary model (I = 0.29; α = 0.72). Blue branches highlight viruses isolated in India. Sequences generated in this study and corresponding accession numbers are indicated in bold. Red dots indicated bootstrap values higher than 80 (PNG 2643 kb)


  1. 1.
    Adams S, Sandrock C. Avian influenza update. Med Princ Pract Int J Kuwait Univ Health Sci Cent. 2010;19:421–32.Google Scholar
  2. 2.
    Dhama K, Chakraborthy S, Tiwari R, Kumar A, Rahal A, Latheef S, et al. Avian/bird flu virus: poultry pathogen having zoonotic and pandemic threats—A review. J Med Sci. 2013;13:301–15.CrossRefGoogle Scholar
  3. 3.
    Peiris JSM, de Jong MD, Guan Y. Avian influenza virus (H5N1): a threat to human health. Clin Microbiol Rev. 2007;20:243–67.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lee C-W, Saif YM. Avian influenza virus. Comp Immunol Microbiol Infect Dis. 2009;32:301–10.CrossRefPubMedGoogle Scholar
  5. 5.
    Dong G, Luo J, Zhang H, Wang C, Duan M, Deliberto TJ, et al. Phylogenetic diversity and genotypical complexity of H9N2 influenza A viruses revealed by genomic sequence analysis. PLoS One. 2011;6:e17212.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Homme PJ, Easterday BC. Avian influenza virus infections. I. Characteristics of influenza A-turkey-Wisconsin-1966 virus. Avian Dis. 1970;14:66–74.CrossRefPubMedGoogle Scholar
  7. 7.
    Perk S, Panshin A, Shihmanter E, Gissin I, Pokamunski S, Pirak M, et al. Ecology and molecular epidemiology of H9N2 avian influenza viruses isolated in Israel during 2000–2004 epizootic. Dev Biol. 2006;124:201–9.Google Scholar
  8. 8.
    Choi YK, Seo SH, Kim JA, Webby RJ, Webster RG. Avian influenza viruses in Korean live poultry markets and their pathogenic potential. Virology. 2005;332:529–37.CrossRefPubMedGoogle Scholar
  9. 9.
    Guo YJ, Krauss S, Senne DA, Mo IP, Lo KS, Xiong XP, et al. Characterization of the pathogenicity of members of the newly established H9N2 influenza virus lineages in Asia. Virology. 2000;267:279–88.CrossRefPubMedGoogle Scholar
  10. 10.
    Shortridge KF. Avian influenza A viruses of southern China and Hong Kong: ecological aspects and implications for man. Bull World Health Organ. 1982;60:129–35.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Aamir UB, Wernery U, Ilyushina N, Webster RG. Characterization of avian H9N2 influenza viruses from United Arab Emirates 2000 to 2003. Virology. 2007;361:45–55.CrossRefPubMedGoogle Scholar
  12. 12.
    Alexander DJ. The history of avian influenza in poultry. World Poult. 2000;7–8.Google Scholar
  13. 13.
    Golender N, Panshin A, Banet-Noach C, Nagar S, Pokamunski S, Pirak M, et al. Genetic characterization of avian influenza viruses isolated in Israel during 2000–2006. Virus Genes. 2008;37:289–97.CrossRefPubMedGoogle Scholar
  14. 14.
    Homayounimehr AR, Dadras H, Shoushtari A, Pourbakhsh SA. Sequence and phylogenetic analysis of the haemagglutinin genes of H9N2 avian influenza viruses isolated from commercial chickens in Iran. Trop Anim Health Prod. 2010;42:1291–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Lindh E, Ek-Kommonen C, Väänänen V-M, Vaheri A, Vapalahti O, Huovilainen A. Molecular epidemiology of H9N2 influenza viruses in Northern Europe. Vet Microbiol. 2014;172:548–54.CrossRefPubMedGoogle Scholar
  16. 16.
    Nagarajan S, Rajukumar K, Tosh C, Ramaswamy V, Purohit K, Saxena G, et al. Isolation and pathotyping of H9N2 avian influenza viruses in Indian poultry. Vet Microbiol. 2009;133:154–63.CrossRefPubMedGoogle Scholar
  17. 17.
    Wu R, Sui ZW, Zhang HB, Chen QJ, Liang WW, Yang KL, et al. Characterization of a pathogenic H9N2 influenza A virus isolated from central China in 2007. Arch Virol. 2008;153:1549–55.CrossRefPubMedGoogle Scholar
  18. 18.
    Nili H, Asasi K. Avian influenza (H9N2) outbreak in Iran. Avian Dis. 2003;47:828–31.CrossRefPubMedGoogle Scholar
  19. 19.
    Nili H, Asasi K. Natural cases and an experimental study of H9N2 avian influenza in commercial broiler chickens of Iran. Avian Pathol J WVPA. 2002;31:247–52.CrossRefGoogle Scholar
  20. 20.
    Tosh C, Nagarajan S, Behera P, Rajukumar K, Purohit K, Kamal RP, et al. Genetic analysis of H9N2 avian influenza viruses isolated from India. Arch Virol. 2008;153:1433–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Chan C-H, Lin K-L, Chan Y, Wang Y-L, Chi Y-T, Tu H-L, et al. Amplification of the entire genome of influenza A virus H1N1 and H3N2 subtypes by reverse-transcription polymerase chain reaction. J Virol Methods. 2006;136:38–43.CrossRefPubMedGoogle Scholar
  22. 22.
    Ottiger H-P. Development, standardization and assessment of PCR systems for purity testing of avian viral vaccines. Biol J Int Assoc Biol Stand. 2010;38:381–8.Google Scholar
  23. 23.
    Gall A, Hoffmann B, Harder T, Grund C, Ehricht R, Beer M. Rapid and highly sensitive neuraminidase subtyping of avian influenza viruses by use of a diagnostic DNA microarray. J Clin Microbiol. 2009;47:2985–8.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR. Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol. 2001;146:2275–89.CrossRefPubMedGoogle Scholar
  25. 25.
    Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21.CrossRefPubMedGoogle Scholar
  26. 26.
    Keane TM, Creevey CJ, Pentony MM, Naughton TJ, Mclnerney JO. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol Biol. 2006;6:29.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Pawar SD, Kale SD, Rawankar AS, Koratkar SS, Raut CG, Pande SA, et al. Avian influenza surveillance reveals presence of low pathogenic avian influenza viruses in poultry during 2009–2011 in the West Bengal State, India. Virol J. 2012;9:151.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Shinde PV, Koratkar SS, Pawar SD, Kale SD, Rawankar AS, Mishra AC. Serologic evidence of avian influenza H9N2 and paramyxovirus type 1 infection in emus (Dromaius novaehollandiae) in India. Avian Dis. 2012;56:257–60.CrossRefPubMedGoogle Scholar
  29. 29.
    Jakhesara SJ, Bhatt VD, Patel NV, Prajapati KS, Joshi CG. Isolation and characterization of H9N2 influenza virus isolates from poultry respiratory disease outbreak. SpringerPlus. 2014;3:196.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Vegad J. Drift variants of low pathogenic avian influenza virus: observations from India. Worlds Poult Sci J. 2014;70:767–74.CrossRefGoogle Scholar
  31. 31.
    Gowthaman V. Etio-pathology and differential diagnosis of low pathogenic avian influenza (LPAI) in poultry. Ph.D. Thesis Indian Vet. Reserach Inst. 2011.Google Scholar
  32. 32.
    Iqbal M, Yaqub T, Reddy K, McCauley JW. Novel genotypes of H9N2 influenza A viruses isolated from poultry in Pakistan containing NS genes similar to highly pathogenic H7N3 and H5N1 viruses. PLoS One. 2009;4:e5788.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Indian Virological Society 2016

Authors and Affiliations

  • Vasudevan Gowthaman
    • 1
    • 2
    Email author
  • Shambu Dayal Singh
    • 1
  • Kuldeep Dhama
    • 1
  • Palani Srinivasan
    • 2
  • Sellappan Saravanan
    • 2
  • Thippichettypalayam Ramasamy Gopala Krishna Murthy
    • 2
  • Kuppanan Sukumar
    • 3
  • Basavaraj Mathapati
    • 4
  • Camille Lebarbenchon
    • 5
  • Yashpal Singh Malik
    • 6
  • Muthannan Andavar Ramakrishnan
    • 4
  1. 1.Avian Diseases Section, Division of PathologyIndian Veterinary Research InstituteIzatnagarIndia
  2. 2.Poultry Disease Diagnosis and Surveillance LaboratoryVeterinary College and Research Institute Campus, Tamil Nadu Veterinary and Animal Sciences UniversityNamakkalIndia
  3. 3.Department of Veterinary MicrobiologyVeterinary College and Research InstituteNamakkalIndia
  4. 4.Division of VirologyIndian Veterinary Research InstituteMukteswarIndia
  5. 5.UMR Processus Infectieux en Milieu Insulaire Tropical, INSERM U1187, CNRS 9192Université de La RéunionSaint Denis, Reunion IslandFrance
  6. 6.Division of Biological StandardizationICAR-Indian Veterinary Research InstituteIzatnagarIndia

Personalised recommendations