Characterizations of even-order Musielak–Orlicz–Sobolev spaces via ball averages and their derivatives
- 96 Downloads
Abstract
In this paper, the authors present some new characterizations of the Musielak–Orlicz–Sobolev spaces with even smoothness order via ball averages and their derivatives on the radius. Consequently, as special examples of the Musielak–Orlicz–Sobolev spaces studied in this paper, the corresponding characterizations for some weighted Sobolev spaces, Orlicz–Sobolev spaces and variable Sobolev spaces are also obtained. Since these characterizations depend only on ball averages and their derivatives on the radius, they provide some possible ways to introduce the corresponding function spaces on any metric measure space.
Keywords
Sobolev space Orlicz space Musielak–Orlicz space Ball averageMathematics Subject Classification
Primary 46E35 Secondary 42B25 42B35Notes
Acknowledgements
The authors would like to thank the anonymous referees for their carefully reading and many useful corrections which do improve the presentation of this paper.
Compliance with ethical standards
Conflict of interest
The authors declare that they have no conflict of interest.
References
- 1.Acerbi, E., Mingione, G.: Regularity results for a class of functionals with non-standard growth. Arch. Ration. Mech. Anal. 156, 121–140 (2001)Google Scholar
- 2.Ahmida, Y., Chlebicka, I., Gwiazda, P., Youssfi, A.: Gossez’s approximation theorems in the Musielak–Orlicz–Sobolev spaces. J. Funct. Anal. 275, 2538–2571 (2018)Google Scholar
- 3.Alabern, R., Mateu, J., Verdera, J.: A new characterization of Sobolev spaces on \({\mathbb{R}^n}\). Math. Ann. 354, 589–626 (2012)Google Scholar
- 4.Birnbaum, Z., Orlicz, W.: Über die verallgemeinerung des begriffes der zueinander konjugierten potenzen. Stud. Math. 3, 1–67 (1931)Google Scholar
- 5.Chang, D.-C., Liu, J., Yang, D., Yuan, W.: Littlewood–Paley characterizations of Hajłasz–Sobolev and Triebel–Lizorkin spaces via averages on balls. Potential Anal. 46, 227–259 (2017)Google Scholar
- 6.Chang, D.-C., Yang, D., Yuan, W., Zhang, J.: Some recent developments of high order Sobolev-type spaces. J. Nonlinear Convex Anal. 17, 1831–1865 (2016)Google Scholar
- 7.Colombo, M., Mingione, G.: Bounded minimisers of double phase variational integrals. Arch. Ration. Mech. Anal. 218, 219–273 (2015)Google Scholar
- 8.Colombo, M., Mingione, G.: Calderón–Zygmund estimates and non-uniformly elliptic operators. J. Funct. Anal. 270, 1416–1478 (2016)Google Scholar
- 9.Cruz-Uribe, D.V., Fiorenza, A.: Variable Lebesgue Spaces, Foundations and Harmonic Analysis, Applied and Numerical Harmonic Analysis. Springer, Heidelberg (2013)Google Scholar
- 10.Dai, F., Gogatishvili, A., Yang, D., Yuan, W.: Characterizations of Sobolev spaces via averages on balls. Nonlinear Anal. 128, 86–99 (2015)Google Scholar
- 11.Dai, F., Gogatishvili, A., Yang, D., Yuan, W.: Characterizations of Besov and Triebel–Lizorkin spaces via averages on balls. J. Math. Anal. Appl. 433, 1350–1368 (2016)Google Scholar
- 12.Dai, F., Liu, J., Yang, D., Yuan, W.: Littlewood–Paley characterizations of fractional Sobolev spaces via averages on balls. Proc. R. Soc. Edinb. Sect. A. 148, 1135–1163 (2018)Google Scholar
- 13.Diening, L.: Maximal function on generalized Lebesgue spaces \(L^{p(\cdot )}\). Math. Inequal. Appl. 7, 245–253 (2004)Google Scholar
- 14.Diening, L.: Maximal function on Musielak–Orlicz spaces and generalized Lebesgue spaces. Bull. Sci. Math. 129, 657–700 (2005)Google Scholar
- 15.Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, vol. 2017. Springer, Heidelberg (2011)Google Scholar
- 16.Diening, L., Harjulehto, P., Hästö, P., Mizuta, Y., Shimomura, T.: Maximal functions in variable exponent spaces: limiting cases of the exponent. Ann. Acad. Sci. Fenn. Math. 34, 503–522 (2009)Google Scholar
- 17.Gwiazda, P., Skrzypczak, I., Zatorska-Goldstein, A.: Existence of renormalized solutions to elliptic equation in Musielak–Orlicz space. J. Differ. Equ. 264, 341–377 (2018)Google Scholar
- 18.Hajłasz, P.: Sobolev spaces on an arbitrary metric space. Potential Anal. 5, 403–415 (1996)Google Scholar
- 19.He, Z., Yang, D., Yuan, W.: Littlewood–Paley characterizations of higher-order Sobolev spaces via averages on balls. Math. Nachr. 291, 284–325 (2018)Google Scholar
- 20.Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J.T.: Sobolev Spaces on Metric Measure Spaces. An Approach Based on Upper Gradients, New Mathematical Monographs 27. Cambridge University Press, Cambridge (2015)Google Scholar
- 21.Hu, J.: A note on Hajłasz–Sobolev spaces on fractals. J. Math. Anal. Appl. 280, 91–101 (2003)Google Scholar
- 22.Kokilashvili, V., Krbec, M.: Weighted Inequalities in Lorentz and Orlicz Spaces. World Scientific, River Edge (1991)Google Scholar
- 23.Ky, L.D.: Bilinear decompositions and commutators of singular integral operators. Trans. Am. Math. Soc. 365, 2931–2958 (2013)Google Scholar
- 24.Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, vol. 1034. Springer, Berlin (1983)Google Scholar
- 25.Musielak, J., Orlicz, W.: On modular spaces. Stud. Math. 18, 49–65 (1959)Google Scholar
- 26.Nakai, E., Yabuta, K.: Pointwise multipliers for functions of bounded mean oscillation. J. Math. Soc. Jpn. 37, 207–218 (1985)Google Scholar
- 27.Nakano, H.: Modulared Semi-Ordered Linear Spaces. Maruzen Co., Ltd, Tokyo (1950)Google Scholar
- 28.Ohno, T., Shimomura, T.: Musielak–Orlicz–Sobolev spaces on metric measure spaces. Czechoslov. Math. J. 65(140), 435–474 (2015)Google Scholar
- 29.Ohno, T., Shimomura, T.: Musielak–Orlicz–Sobolev spaces with zero boundary values on metric measure spaces. Czechoslov. Math. J. 66(141), 371–394 (2016)Google Scholar
- 30.Orlicz, W.: Über eine gewisse Klasse von Räumen vom Typus B. Bull. Int. Acad. Pol. Ser. A 8, 207–220 (1932)Google Scholar
- 31.Rao, M.M., Ren, Z.: Applications of Orlicz Spaces. Marcel Dekker, New York (2002)Google Scholar
- 32.Rao, M.M., Ren, Z.: Theory of Orlicz Spaces. Marcel Dekker, New York (1991)Google Scholar
- 33.Rudin, W.: Functional Analysis, Second Edition, International Series in Pure and Applied Mathematics, 2nd edn. McGraw-Hill Inc., New York (1991)Google Scholar
- 34.Shanmugalingam, N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoam. 16, 243–279 (2000)Google Scholar
- 35.Xie, G., Yang, D., Yuan, W.: Pointwise characterizations of even order Sobolev spaces via derivatives of ball averages. Can. Math. Bull. (2019). https://doi.org/10.4153/S000843951800005X Google Scholar
- 36.Yang, D.: New characterizations of Hajłasz–Sobolev spaces on metric spaces. Sci. China Ser. A 46, 675–689 (2003)Google Scholar
- 37.Yang, D., Liang, Y., Ky, L.D.: Real-variable Theory of Musielak–Orlicz Hardy Spaces. Lecture Notes in Mathematics, vol. 2182. Springer, Cham (2017)Google Scholar
- 38.Yang, D., Yuan, W.: Pointwise characterizations of Besov and Triebel–Lizorkin spaces in terms of averages on balls. Trans. Am. Math. Soc. 369, 7631–7655 (2017)Google Scholar
- 39.Yang, D., Yuan, W., Zhou, Y.: A new characterization of Triebel–Lizorkin spaces on \({\mathbb{R}^n}\). Publ. Mat. 57, 57–82 (2013)Google Scholar
- 40.Yang, D., Yuan, W., Zhuo, C.: Musielak–Orlicz Besov-type and Triebel–Lizorkin-type spaces. Rev. Mat. Complut. 27, 93–157 (2014)Google Scholar
- 41.Yang, S., Yang, D., Yuan, W.: New characterizations of Musielak–Orlicz–Sobolev spaces via sharp ball averaging functions. Front. Math. China 14, 177–201 (2019)Google Scholar
- 42.Youssfi, A., Ahmida, Y.: Some approximation results in Musielak–Orlicz spaces, arXiv: 1708.02453
- 43.Zhang, J., Chang, D.-C., Yang, D.: Characterizations of Sobolov spaces associated to operators satisfying off-diagonal estimates on balls. Math. Methods Appl. Sci. 40, 2907–2929 (2017)Google Scholar
- 44.Zhang, J., Zhuo, C., Yang, D., He, Z.: Littlewood–Paley characterizations of Triebel–Lizorkin–Morrey spaces via ball averages. Nonlinear Anal. 150, 76–103 (2017)Google Scholar
- 45.Zhang, Y., Chang, D.-C., Yang, D.: Generalized Littlewood–Paley characterizations of Triebel–Lizorkin spaces. J. Nonlinear Convex Anal. 18, 1171–1190 (2017)Google Scholar
- 46.Zhuo, C., Sickel, W., Yang, D., Yuan, W.: Characterizations of Besov-type and Triebel–Lizorkin-type spaces via averages on balls. Can. Math. Bull. 60, 655–672 (2017)Google Scholar
- 47.Zhuo, C., Chang, D.-C., Yang, D., Yuan, W.: Characterizations of variable Triebel–Lizorkin-type spaces via ball averages. J. Nonlinear Convex Anal. 19, 19–40 (2018)Google Scholar