Advertisement

Analysis and Mathematical Physics

, Volume 9, Issue 4, pp 2329–2344 | Cite as

Abundant exact solutions and interaction phenomena of the (2 + 1)-dimensional YTSF equation

  • Si-Jia Chen
  • Yu-Hang Yin
  • Wen-Xiu MaEmail author
  • Xing LüEmail author
Article

Abstract

In this paper, we study abundant exact solutions including the lump and interaction solutions to the (2 + 1)-dimensional Yu–Toda–Sasa–Fukuyama equation. With symbolic computation, lump solutions and the interaction solutions are generated directly based on the Hirota bilinear formulation. Analyticity and well-definedness is guaranteed through some conditions posed on the parameters. With special choices of the involved parameters, the interaction phenomena are simulated and discussed. We find the lump moves from one hump to the other hump of the two-soliton, while the lump separates from the hump of the one-soliton.

Keywords

Hirota bilinear form Lump solutions Interaction solutions YTSF equation 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 71971015, and the Fundamental Research Funds for the Central Universities of China (2018RC031). Y. H. Yin is supported by the Project of National Innovation and Entrepreneurship Training Program for College Students under Grant No. 201710004054.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

References

  1. 1.
    Serrano, A.M., Mellibovsky, F.: On a solenoidal Fourier–Chebyshev spectral method for stability analysis of the Hagen–Poiseuille flow. Appl. Numer. Math. 57(8), 920–938 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Panizzi, S.: Low regularity global solutions for nonlinear evolution equations of Kirchhoff type. J. Math. Anal. Appl. 332(2), 1195–1215 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Wazwaz, A.M., El-Tantawy, S.A.: New (3+1)-dimensional equations of Burgers type and Sharma–Tasso–Olver type: multiple-soliton solutions. Nonlinear Dyn. 87(4), 1–5 (2016)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Lü, X., Wang, J.P., Lin, F.H., et al.: Lump dynamics of a generalized two-dimensional Boussinesq equation in shallow water. Nonlinear Dyn. 91(2), 1249–1259 (2018)CrossRefGoogle Scholar
  5. 5.
    Lin, F.H., Chen, S.T., Qu, Q.X., Wang, J.P., Zhou, X.W., Lü, X.: Resonant multiple wave solutions to a new (3+1)-dimensional generalized Kadomtsev–Petviashvili equation: linear superposition principle. Appl. Math. Lett. 78, 112–117 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Xu, H.N., Ruan, W.Y., Zhang, Y., Lü, X.: Multi-exponential wave solutions to two extended Jimbo-Miwa equations and the resonance behavior. Appl. Math. Lett. 99, 105976 (2019)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hua, Y.-F., Guo, B.-L., Ma, W.-X., Lü, X.: Interaction behavior associated with a generalized (2 + 1)-dimensional Hirota bilinear equation for nonlinear waves. Appl. Math. Model. 74, 184–198 (2019)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Yin, Y.-H., Ma, W.-X., Liu, J.-G., Lü, X.: Diversity of exact solutions to a (3+1)-dimensional nonlinear evolution equation and its reduction. Comput. Math. Appl. 76, 1275–1283 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gao, L.-N., Zi, Y.-Y., Yin, Y.-H., Ma, W.-X., Lü, X.: Bäcklund transformation, multiple wave solutions and lump solutions to a (3 + 1)-dimensional nonlinear evolution equation. Nonlinear Dyn. 89, 2233–2240 (2017)CrossRefGoogle Scholar
  10. 10.
    Gao, L.-N., Zhao, X.-Y., Zi, Y.-Y., Yu, J., Lü, X.: Resonant behavior of multiple wave solutions to a Hirota bilinear equation. Comput. Math. Appl. 72, 1225–1229 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ablowitz, M.J., Musslimani, Z.H.: Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation. Nonlinearity 29(3), 915–946 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fokou, M., Kofane, T.C., Mohamadou, A., Yomba, E.: One-and two-soliton solutions to a new KdV evolution equation with nonlinear and nonlocal terms for the water wave problem. Nonlinear Dyn. 83(4), 2461–2473 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  14. 14.
    Lü, X., Lin, F.-H., Qi, F.-H.: Analytical study on a two-dimensional Korteweg-de Vries model with bilinear representation. Bäcklund transformation and soliton solutions. Appl. Math. Model. 39, 3221–3226 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lü, X., Ma, W.-X.: Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation. Nonlinear Dyn. 85, 1217–1222 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Conte, R., Musette, M.: Painlevé analysis and Bäcklund transformation in the Kuramoto–Sivashinsky equation. J. Phys. A Math. Gen. 22(2), 169–177 (1989)CrossRefGoogle Scholar
  17. 17.
    Jimbo, M., Kruskal, M.D., Miwa, T.: Painlevé test for the self-dual Yang–Mills equation. Phys. Lett. A 92(2), 59–60 (1982)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ma, W.X.: Lump solutions to the Kadomtsev–Petviashvili equation. Phys. Lett. A 379(36), 1975–1978 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Yang, J.Y., Ma, W.X.: Abundant interaction solutions of the KP equation. Nonlinear Dyn. 89(2), 1–6 (2017)MathSciNetGoogle Scholar
  20. 20.
    Manakov, S.V., Zakharov, V.E., Bordag, L.A., Its, A.R., Matveev, V.B.: Two-dimensional solitons of the Kadomtsev–Petviashvili equation and their interaction. Phys. Lett. A 63(3), 205–206 (1977)CrossRefGoogle Scholar
  21. 21.
    Gilson, C.R., Nimmo, J.J.C.: Lump solutions of the BKP equation. Phys. Lett. A 147(8–9), 472–476 (1990)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Lü, X., Chen, S.T., Ma, W.X.: Constructing lump solutions to a generalized Kadomtsev–Petviashvili–Boussinesq equation. Nonlinear Dyn. 86(1), 523–534 (2016)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Wang, C.: Spatiotemporal deformation of lump solution to (2+1)-dimensional KdV equation. Nonlinear Dyn. 84(2), 697–702 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Lü, J., Bilige, S., Chaolu, T.: The study of lump solution and interaction phenomenon to (2+1)-dimensional generalized fifth-order KdV equation. Nonlinear Dyn. 13, 1–8 (2017)Google Scholar
  25. 25.
    Tang, Y., Tao, S., Zhou, M., Guan, Q.: Interaction solutions between lump and other solitons of two classes of nonlinear evolution equations. Nonlinear Dyn. 89(2), 1–14 (2017)MathSciNetGoogle Scholar
  26. 26.
    Tang, Y., Tao, S., Guan, Q.: Lump solitons and the interaction phenomena of them for two classes of nonlinear evolution equations. Comput. Math. Appl. 72(9), 2334–2342 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Lu, Z., Tian, E.M., Grimshaw, R.: Interaction of two lump solitons described by the Kadomtsev–Petviashvili I equation. Wave Motion 40(2), 123–135 (2004)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Tan, W., Dai, Z.: Dynamics of kinky wave for (3+1)-dimensional potential Yu–Toda–Sasa–Fukuyama equation. Nonlinear Dyn. 85(2), 817–823 (2016)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Yu, S.J., Toda, K., Sasa, N., Fukuyama, T.: N soliton solutions to the Bogoyavlenskii–Schiff equation and a quest for the soliton solution in (3 + 1) dimensions. J. Phys. A Gen. Phys. 31(14), 3337–3347 (1998)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Hamed, Y.S., Sayed, M., Elagan, S.K., Elzahar, E.R.: The improved-expansion method for solving (3+1)-dimensional potential-YTSF equation. J. Mod. Methods Numer. Math. 2(1–2), 32–38 (2011)zbMATHGoogle Scholar
  31. 31.
    Zeng, Z.F., Liu, J.G., Nie, B.: Multiple-soliton solutions, soliton-type solutions and rational solutions for the (3+1)-dimensional generalized shallow water equation in oceans, estuaries and impoundments. Nonlinear Dyn. 86(1), 1–9 (2016)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Sun, H.Q., Chen, A.H.: Rational solutions and lump solutions of the potential YTSF equation. Zeitschrift für Naturforschung A 72(7), 665–672 (2017)CrossRefGoogle Scholar
  33. 33.
    Liu, J., Zeng, Z.: Multiple soliton solutions, soliton-type solutions and rational solutions for the (3+1)-dimensional potential-YTSF equation. Indian J. Pure Appl. Math. 45(6), 989–1002 (2014)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Hu, Y., Chen, H., Dai, Z.: New kink multi-soliton solutions for the (3+1)-dimensional potential-Yu–Toda–Sasa–Fukuyama equation. Appl. Math. Comput. 234, 548–556 (2014)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Dai, Z., Liu, J., Li, D.: Applications of HTA and EHTA to YTSF equation. Appl. Math. Comput. 207(2), 360–364 (2009)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsBeijing Jiao Tong UniversityBeijingChina
  2. 2.Department of MathematicsZhejiang Normal UniversityJinhuaChina
  3. 3.Department of Mathematics and StatisticsUniversity of South FloridaTampaUSA
  4. 4.College of Mathematics and Systems ScienceShandong University of Science and TechnologyQingdaoChina
  5. 5.Department of Mathematical Sciences, International Institute for Symmetry Analysis and Mathematical ModellingNorth-West UniversityMmabathoSouth Africa

Personalised recommendations