Advertisement

Analysis and Mathematical Physics

, Volume 9, Issue 4, pp 1887–1903 | Cite as

Certain Ma–Minda type classes of analytic functions associated with the crescent-shaped region

  • Poonam SharmaEmail author
  • Ravinder Krishna Raina
  • Janusz Sokół
Article
  • 107 Downloads

Abstract

In this paper, we study certain classes of analytic functions which satisfy a Ma–Minda type subordination condition and are associated with the crescent-shaped region. We first give the extremal functions of these function classes and related to them, we present various characteristic properties. It is shown that for certain range of coefficients, a bilinear transformation belongs to a certain class (defined below). Also, for this and related classes, we present certain results and give some specific examples. Further, we obtain results on coefficient inequalities and coefficient estimates. Finally, using the subordination theory, we derive various results and corollaries for functions belonging to the classes studied in this paper.

Keywords

Analytic functions Convex functions Starlike functions Subordination 

Mathematics Subject Classification

Primary 30C45 30C50 30C80 

Notes

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Aouf, M.K., Dziok, J., Sokół, J.: On a subclass of strongly starlike functions. Appl. Math. Lett. 24, 27–32 (2011)Google Scholar
  2. 2.
    Dziok, J., Raina, R.K., Sokół, J.: On alpha-convex functions related to shell-like functions connected with Fibonacci numbers. Appl. Math. Comput. 218, 966–1002 (2011)Google Scholar
  3. 3.
    Dziok, J., Raina, R.K., Sokół, J.: Certain results for a class of convex functions related to a shell-like curve connected with Fibonacci numbers. Comput. Math. Appl. 61(9), 2605–2613 (2011)Google Scholar
  4. 4.
    Dziok, J., Raina, R.K., Sokół, J.: On a class of starlike functions related to a shell-like curve connected with Fibonacci numbers. Math. Comput. Model. 57, 1203–1211 (2013)Google Scholar
  5. 5.
    Dziok, J., Raina, R.K., Sokół, J.: Differential subordinations and alpha-convex functions. Acta Math. Sci. 33B, 609–620 (2013)Google Scholar
  6. 6.
    Gandhi, S., Ravichandran, V.: Starlike functions associated with a lune. Asian-Eur. J. Math. 10(3), 1750064 (2017). (12 p.)Google Scholar
  7. 7.
    Gandhi, S., Kumar, S., Ravichandran, V.: First order differential subordinations for Carathéodory functions. Kyungpook Math. J. (accepted) Google Scholar
  8. 8.
    Kanas, S.: Alternative characterization of the class \(k\)-UCV and related classes of univalent functions. Serdica Math. J. 25, 341–350 (1999)Google Scholar
  9. 9.
    Kanas, S., Wiśniowska, A.: Conic regions and k-uniform convexity. J. Comput. Appl. Math. 105, 327–336 (1999)Google Scholar
  10. 10.
    Kanas, S., Srivastava, H.M.: Linear operators associated with \(k\)-uniformly convex functions. Integral Transform. Spec. Funct. 9, 121–132 (2000)Google Scholar
  11. 11.
    Kanas, S., Wiśniowska, A.: Conic domains and starlike functions. Rev. Roum. Math. Pures Appl. 45, 647–657 (2000)Google Scholar
  12. 12.
    Ma, W., Minda, D.A.: Unified treatment of some special classes of univalent functions. In: Li, Z., Ren, F., Yang, L., Zhang, S. (eds.) Proceedings of the Conference on Complex Analysis, International Press, pp. 157–169 (1994)Google Scholar
  13. 13.
    Miller, S.S., Mocanu, P.T.: On some classes of first order differential subordinations. Mich. Math. J. 32, 185–195 (1985)Google Scholar
  14. 14.
    Miller, S.S., Mocanu, P.T.: Differential Subordinations, Theory and Applications. Series of Monographs and Textbooks in Pure and Applied Mathematics, vol. 225. Marcel Dekker Inc., New York/Basel (2000)Google Scholar
  15. 15.
    Raina, R.K., Sokół, J.: Some properties related to a certain class of starlike functions. C. R. Acad. Sci. Paris Ser. I 353, 973–978 (2015)Google Scholar
  16. 16.
    Raina, R.K., Sokół, J.: On coefficient estimates for a certain class of starlike functions. Hacet. J. Math. Stat. 44(6), 1427–1433 (2015)Google Scholar
  17. 17.
    Raina, R.K., Sharma, P., Sokół, J.: Certain classes of analytic functions related to the crescent-shaped regions. J. Contemp. Math. Anal. 53, 355 (2018).  https://doi.org/10.3103/S1068362318060067 Google Scholar
  18. 18.
    Ravichandran, V., Sharma, Kanika: Sufficient conditions for starlikeness. J. Korean Math. Soc. 52(4), 727–749 (2015)Google Scholar
  19. 19.
    Rønning, F.: Uniformly convex functions and a corresponding class of starlike functions. Proc. Am. Math. Soc. 118, 189–196 (1993)Google Scholar
  20. 20.
    Sharma, Kanika, Jain, Naveen Kumar, Ravichandran, V.: Starlike functions associated with a cardioid. Afr. Mat. 27, 923 (2016).  https://doi.org/10.1007/s13370-015-0387-7 Google Scholar
  21. 21.
    Sokół, J.: Coeffcient estimates in a class of strongly starlike functions. Kyungpook Math. J. 49, 349–353 (2009)Google Scholar
  22. 22.
    Sokół, J., Wiśniowska-Wajnryb, A.: On certain problem in the clases of \(k\)-starlike functions. Comput. Math. Appl. 62, 4733–4741 (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Poonam Sharma
    • 1
    Email author
  • Ravinder Krishna Raina
    • 2
    • 3
  • Janusz Sokół
    • 4
  1. 1.Department of Mathematics and AstronomyUniversity of LucknowLucknowIndia
  2. 2.M.P. University of Agriculture and TechnologyUdaipurIndia
  3. 3.UdaipurIndia
  4. 4.Faculty of Mathematics and Natural SciencesUniversity of RzeszówRzeszówPoland

Personalised recommendations