Advertisement

Projective classification of rational \(\mathbb {C}\mathbf {P}^{1}\)-mappings

  • Konovenko NadiiaEmail author
  • Lychagin Valentin
Article
  • 12 Downloads

Abstract

We study the orbits of various \(\mathbf {SL}_{2}\left( \mathbb {C}\right) \)-actions on the spaces of rational \(\mathbb {C}\mathbf {P}^{1}\)-mappings. The fields of rational differential invariants and the corresponding ordinary differential equations that describe orbits are found.

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Bibikov, P., Lychagin, V.: Projective classification of binary and ternary forms. J. Geom. Phys. 61(10), 1914–1927 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bibikov, P., Lychagin, V.: On differential invariants of actions of semisimple Lie groups. J. Geom. Phys. 85, 99–105 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bogomolov, F., Petrov, T.: Algebraic curves and one-dimensional fields. Courant Lect. Math. 8, 214 (2002)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Konovenko, N., Lychagin, V.: On projective classification of algebraic curves. Math. Bull. Shevchenko Sci. Soc. 10, 51–64 (2013).  https://doi.org/10.1007/s13324-015-0113-5 zbMATHGoogle Scholar
  5. 5.
    Krasilshchik, I.S., Lychagin, V.V., Vinogradov, A.M.: Geometry of jet spaces and nonlinear partial differential equations. Advanced Studies in Contemporary Mathematics, vol. 1. Gordon and Breach Science Publishers, New York, xx+441 pp (1986)Google Scholar
  6. 6.
    Kruglikov, B., Lychagin, V.: Geometry of differential equations. In: Hanbook of Global Analysis, pp. 725–772 (2008)Google Scholar
  7. 7.
    Konovenko, N.: Differential Invariants and \(\mathfrak{sl}_{2}\)-Geometries, p. 188. Naukova Dumka, Kiev (2013). (in Russian)Google Scholar
  8. 8.
    Kumpera, A.: Invariants differentiels d’un pseudogroupe de Lie, Part 1. J. Differ. Geom. 10(2), 289–345 (1975)CrossRefzbMATHGoogle Scholar
  9. 9.
    Kumpera, A.: Invariants differentiels d’un pseudogroupe de Lie, Part 2. J. Differ. Geom. 10(3), 347–416 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kruglikov, B., Lychagin, V.: Global Lie–Tresse theorem. Sel. Math. 22(3), 1357–1411 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Olver, P.: Classical Invariant Theory. Cambridge University Press, Cambridge (1999)CrossRefzbMATHGoogle Scholar
  12. 12.
    Olver, P.: Differential invariant algebras. Comtemp. Math. 549, 95–121 (2011)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Ovsiannikov, L.: Group Analysis of Differential Equations, pp. 487–489. Nauka, Moscow (1978). (Engl. transl. Academic Press New York (1982))Google Scholar
  14. 14.
    Rosenlicht, M.: A remark on quotient spaces. An. Acad. Brasil. Ci. 35, 487–489 (1963)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Tresse, A.: Sur les invariants differentiels des groupes continus de transformations. Acta Math. 18, 1–88 (1894)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Odessa National Academy of Food TechnologiesOdessaUkraine
  2. 2.University of TromsøTromsøNorway
  3. 3.V.A. Trapeznikov Institute of Control Sciences RASMoscowRussia

Personalised recommendations