Lump-type solutions and interaction solutions in the (3 + 1)-dimensional potential Yu–Toda–Sasa–Fukuyama equation
- 191 Downloads
- 4 Citations
Abstract
In this work, we consider the (3 + 1)-dimensional potential Yu–Toda–Sasa–Fukuyama (YTSF) equation. By employing the extended homoclininc test approach and Hirota bilinear method, we derive a class of lump solutions of the potential YTSF equation. It is interesting that interaction solutions between the lump-type solution and one stripe soliton, and the lump-type solution and a pair of resonance solution are obtained, respectively, by using a direct method. The interaction solutions of the potential YTSF equation show that a lump-type solution appears from a soliton wave and swallowed by it later, which are the completely non-elastic interactions that rare to see. Moreover, we also obtain its periodic lump-type solutions. It is hoped that our results can be used to enrich the dynamic behaviors of the YTSF-type equations.
Keywords
The (3 + 1)-dimensional potential YTSF equation Hirota bilinear method Lump-type solutionsMathematics Subject Classification
35Q51 35Q53 35C99 68W30 74J35Notes
Acknowledgements
We express our sincere thanks to the Editor and the Referees for their valuable comments. This work was supported by the Jiangsu Province Natural Science Foundation of China under Grant No. BK20181351, the Postgraduate Research and Practice Program of Education and Teaching Reform of CUMT under Grant No. YJSJG_2018_036, the “Qinglan Engineering project” of Jiangsu Universities, the National Natural Science Foundation of China under Grant No. 11301527, the Fundamental Research Fund for the Central Universities under the Grant No. 2017XKQY101, and the General Financial Grant from the China Postdoctoral Science Foundation under Grant Nos. 2015M570498 and 2017T100413.
Compliance with ethical standards
Conflict of interest
The authors declare that they have no conflict of interest.
References
- 1.Ma, W.X.: Lump solutions to the Kadomtsev–Petviashvili equation. Phys. Lett. A 379(36), 1975–1978 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 2.Minzoni, A.A., Smyth, N.F.: Evolution of lump solutions for the KP equation. Wave Motion 24(3), 291–305 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
- 3.Satsuma, J.: Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 20(7), 1496–1503 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
- 4.Gilson, C.R., Nimmo, J.J.C.: Lump Solutions to the BKP Equation Nonlinear Evolution Equations and Dynamical Systems. Springer, Berlin (1991)Google Scholar
- 5.Yang, J.Y., Ma, W.X.: Lump solutions to the BKP equation by symbolic computation. Int. J. Mod. Phys. B 30(28–29), 539 (2016)MathSciNetzbMATHGoogle Scholar
- 6.Lü, X., Chen, S.T., Ma, W.X.: Constructing lump solutions to a generalized Kadomtsev–Petviashvili–Boussinesq equation. Nonlinear Dyn. 86(1), 1–12 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 7.Ma, W.X., Qin, Z., Lü, X.: Lump solutions to dimensionally reduced gKP and gBKP equations. Nonlinear Dyn. 84(2), 923–931 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 8.Ma, H.C., Deng, A.P.: Lump solution of (2+1)-dimensional Boussinesq equation. Theor. Phys. 65(5), 546–552 (2016)MathSciNetzbMATHGoogle Scholar
- 9.Yang, J.Y., Ma, W.X., Qin, Z.Y.: Lump and lump-soliton solutions to the (2+1)-dimensional Ito equation. Anal. Math. Phys. 8(3), 427–436 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 10.Ma, W.X., Huang, T., Yi, Z.: A multiple exp-function method for nonlinear differential equations and its application. Phys. Scr. 82(6), 5468–5478 (2010)CrossRefGoogle Scholar
- 11.Ma, W.X., Zhou, Y.: Lump solutions to particle differential equations via Hirota bilinear forms. J. Differ. Equ. 264(4), 2633–2659 (2018)zbMATHCrossRefGoogle Scholar
- 12.Zhang, J.B., Ma, W.X.: Mixed lump-kink solutions to the BKP equation. Comput. Math. Appl. 2017(74), 1399–1405 (2017)MathSciNetzbMATHGoogle Scholar
- 13.Ma, W.X., Zhou, Y., Dougherty, R.: Lump-type solutions to nonlinear differential equations derived from generalized bilinear equations. Int. J. Mod. Phys. B 30(28), 140 (2016)MathSciNetzbMATHGoogle Scholar
- 14.Lü, X., Ma, W.X.: Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation. Nonlinear Dyn. 85(2), 1217–1222 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 15.Chen, S.T., Ma, W.X.: Lump solutions to a generalized Bogoyavlensky–Konopelchenko equation. Front. Math. China 13(3), 525–534 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 16.Manukure, S., Zhou, Y., Ma, W.X.: Lump solutions to a (2 + 1)-dimensional extended KP equation. Comput. Math. Appl. 75, 2414–2419 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 17.Chen, S.T., Ma, W.X.: Lump solutions of a generalized Calogero–Bogoyavlenskii–Schiff equation. Comput. Math. Appl. 76, 1680–1685 (2018)MathSciNetCrossRefGoogle Scholar
- 18.Zhang, J.B., Ma, W.X.: Mixed lump-kink solutions to the BKP equation. Comput. Math. Appl. 74, 591–596 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 19.Ma, W.X., Yong, X., Zhang, H.Q.: Diversity of interaction solutions to the (2+ 1)-dimensional Ito equation. Comput. Math. Appl. 75(1), 289–295 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 20.Ma, W.X.: Abundant lumps and their interaction solutions of (3+ 1)-dimensional linear PDEs. J. Geom. Phys. 133, 10–16 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 21.Ma, W.X.: Lump and interaction solutions of linear PDEs in (3 + 1)-dimensions. East Asian J. Appl. Math. (2018) (in press) Google Scholar
- 22.Liu, J., Mu, G., Dai, Z., Luo, H.: Spatiotemporal deformation of multi-soliton to (2 + 1)-dimensional KdV equation. Noninear Dyn. 83(1–2), 355–360 (2017)MathSciNetGoogle Scholar
- 23.Yu, S.J., Toda, K., Sasad, N., Fukuyama, T.: N-soliton solutions to the Bogoyavlenskii–Schiff equation and a quest for the soliton solution in (3 + 1)-dimensions. J. Phys. A Math. Gen. 31, 3337 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
- 24.Zhang, T.X., Xuan, H.N., Zhang, D.F., et al.: Non-travelling wave solutions to a (3 + 1)-dimensional potential-YTSF equation and a simplified model for reacting mixtures. Chaos Solitons Fractals 34(3), 1006–1013 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
- 25.Darvishi, M.T., Najafi, M.: A modification of extended homoclinic test approach to solve the (3 + 1)-dimensional potential-YTSF equation. Chin. Phys. Lett. 28(4), 040202 (2011)CrossRefGoogle Scholar
- 26.Ma, W.X., You, Y.: Solving the Korteweg–de Vries equation by its bilinear form: Wronskian solutions. Trans. Am. Math. Soc. 357(5), 1753–1778 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
- 27.Ma, W. X.: Wronskian solutions to integrable equations. Discrete Contin. Dyn. Syst. Suppl, 506–515 (2009)Google Scholar
- 28.Tian, S.F., Zhang, Y.F., Feng, B.F., Zhang, H.Q.: On the Lie algebras, generalized symmetries and Darboux transformations of the fifth-order evolution equations in shallow water. Chin. Ann. Math. B 36(4), 543–560 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 29.Xu, M.J., Tian, S.F., Tu, J.M., Zhang, T.T.: Bäcklund transformation, infinite conservation laws and periodic wave solutions to a generalized (2 + 1)-dimensional Boussinesq equation. Nonlinear Anal. RWA 31, 388–408 (2016)zbMATHCrossRefGoogle Scholar
- 30.Tian, S.F.: Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method. J. Differ. Equ. 262, 506–558 (2017)zbMATHCrossRefGoogle Scholar
- 31.Tian, S.F.: The mixed coupled nonlinear Schrödinger equation on the half-line via the Fokas method. Proc. R. Soc. Lond. A. 472(2195), 20160588 (2016)zbMATHCrossRefGoogle Scholar
- 32.Tian, S.F.: Initial-boundary value problems of the coupled modified Korteweg–de Vries equation on the half-line via the Fokas method. J. Phys. A Math. Theor. 50, 395204 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 33.Feng, L.L., Zhang, T.T.: Breather wave, rogue wave and solitary wave solutions of a coupled nonlinear Schrödinger equation. Appl. Math. Lett. 78, 133–140 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 34.Qin, C.Y., Tian, S.F., Zou, L., Ma, W.X.: Solitary wave and quasi-periodic wave solutions to a (3 + 1)-dimensional generalized Calogero–Bogoyavlenskii–Schiff equation. Adv. Appl. Math. Mech. 10(4), 948–977 (2018)MathSciNetCrossRefGoogle Scholar
- 35.Tian, S.F., Zhang, T.T.: Long-time asymptotic behavior for the Gerdjikov–Ivanov type of derivative nonlinear Schrödinger equation with time-periodic boundary conditon. Proc. Am. Math. Soc. 146(4), 1713–1729 (2018)zbMATHCrossRefGoogle Scholar
- 36.Qin, C.Y., Tian, S.F., Wang, X.B., Zhang, T.T., Li, J.: Rogue waves, bright-dark solitons and traveling wave solutions of the (3 + 1)-dimensional generalized Kadomtsev–Petviashvili equation. Comput. Math. Appl. 75(12), 4221–4231 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 37.Wang, X.B., Tian, S.F., Zhang, T.T.: Characteristics of the breather and rogue waves in a (2 + 1)-dimensional nonlinear Schrödinger equation. Proc. Am. Math. Soc. 146(8), 3353–3365 (2018)zbMATHCrossRefGoogle Scholar
- 38.Tian, S.F.: Initial-boundary value problems for the coupled modified Korteweg–de Vries equation on the interval. Commun. Pure Appl. Anal. 17(3), 923–957 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 39.Yan, X.W., Tian, S.F., Dong, M.J., Zhou, L., Zhang, T.T.: Characteristics of solitary wave, homoclinic breather wave and rogue wave solutions in a (2 + 1)-dimensional generalized breaking soliton equation. Comput. Math. Appl. 76(1), 179–186 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 40.Tian, S.F.: Asymptotic behavior of a weakly dissipative modified two-component Dullin–Gottwald–Holm system. Appl. Math. Lett. 83, 65–72 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 41.Wang, X.B., Zhang, T.T., Dong, M.J.: Dynamics of the breathers and rogue waves in the higher-order nonlinear Schrödinger equation. Appl. Math. Lett. 86, 298–304 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 42.Feng, L.L., Tian, S.F., Zhang, T.T.: Nonlocal symmetries and consistent Riccati expansions of the (2 + 1)-dimensional dispersive long wave equation. Z. Naturforsch. A 72(5), 425–431 (2017)CrossRefGoogle Scholar
- 43.Wang, X.B., Tian, S.F., Qin, C.Y., Zhang, T.T.: Characteristics of the breathers, rogue waves and solitary waves in a generalized (2 + 1)-dimensional Boussinesq equation. EPL 115, 10002 (2016)CrossRefGoogle Scholar
- 44.Tu, J.M., Tian, S.F., Xu, M.J., Ma, P.L., Zhang, T.T.: On periodic wave solutions with asymptotic behaviors to a (3 + 1)-dimensional generalized B-type Kadomtsev–Petviashvili equation in fluid dynamics. Comput. Math. Appl. 72, 2486–2504 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 45.Tu, J.M., Tian, S.F., Xu, M.J., Zhang, T.T.: Quasi-periodic waves and solitary waves to a generalized KdV–Caudrey–Dodd–Gibbon equation from fluid dynamics. Taiwan. J. Math. 20, 823–848 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 46.Tian, S.F., Zhang, H.Q.: Riemann theta functions periodic wave solutions and rational characteristics for the nonlinear equations. J. Math. Anal. Appl. 371, 585–608 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 47.Tian, S.F.: Infinite propagation speed of a weakly dissipative modified two-component Dullin–Gottwald–Holm system. Appl. Math. Lett. 89, 1–7 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
- 48.Tian, S.F., Zhang, H.Q.: On the integrability of a generalized variable-coefficient Kadomtsev–Petviashvili equation. J. Phys. A Math. Theor. 45, 055203 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 49.Wang, X.B., Tian, S.F., Qin, C.Y., Zhang, T.T.: Lie symmetry analysis, analytical solutions, and conservation laws of the generalised Whitham–Broer–Kaup-like equations. Z. Naturforsch. A 72(3), 269–279 (2017)CrossRefGoogle Scholar
- 50.Tian, S.F., Zhang, H.Q.: On the integrability of a generalized variable-coefficient forced Korteweg–de Vries equation in fluids. Stud. Appl. Math. 132, 212–246 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 51.Tian, S.F., Zhang, H.Q.: Riemann theta functions periodic wave solutions and rational characteristics for the (1 + 1)-dimensional and (2 + 1)-dimensional Ito equation. Chaos, Solitons Fractals 47, 27–41 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 52.Dai, Z., Huang, J., Jiang, M., Wang, S.H.: Homoclinic orbits and periodic solitons for Boussinesq equation with even constraint. Chaos Solitons Fractals 26(4), 1189–1194 (2005)MathSciNetzbMATHCrossRefGoogle Scholar