Advertisement

Existence results for trifunction equilibrium problems and fixed point problems

  • Nihar Kumar Mahato
  • Muhammad Aslam Noor
  • Nabin Kumar Sahu
Article

Abstract

In this paper, we establish the existence and uniqueness solutions of trifunction equilibrium problems using the generalized relaxed \(\alpha \)-monotonicity in Banach spaces. By using the generalized f-projection operator, a hybrid iteration scheme is presented to find a common element of the solutions of a system of trifunction equilibrium problems and the set of fixed points of an infinite family of quasi-\(\phi \)-nonexpansive mappings. Moreover, the strong convergence of our new proposed iterative method under generalized relaxed \(\alpha \)-monotonicity is considered.

Keywords

Quasi-\(\phi \)-nonexpansive mapping Normalized duality mapping General metric projection General f-projection operator Generalized relaxed \(\alpha \)-monotonicity 

Mathematics Subject Classification

47J05 47H09 49J25 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

References

  1. 1.
    Preda, V., Beldiman, M., Bătătorescu, A.: On variational-like inequalities with generalized monotone mappings. In: Generalized Convexity and Related Topics. Lecture Notes in Economics and Mathematical Systems, vol. 583, pp. 415–431. Springer, Berlin (2007)Google Scholar
  2. 2.
    Fang, Y.P., Huang, N.J.: Variational-like inequalities with generalized monotone mappings in Banach spaces. J. Optim. Theory Appl. 118(2), 327–338 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bai, M.R., Zhou, S.Z., Ni, G.Y.: Variational-like inequalities with relaxed \(\eta -\alpha \) pseudomonotone mappings in Banach spaces. Appl. Math. Lett. 19(6), 547–554 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Onjai-uea, N., Kumam, P.: Existence and convergence theorems for the new system of generalized mixed variational inequalities in banach spaces. J. Inequal. Appl. 2012(1), 9 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Petrot, N., Wattanawitoon, K., Kumam, P.: A hybrid projection method for generalized mixed equilibrium problems and fixed point problems in Banach spaces. Nonlinear Anal. Hybrid Syst. 4(4), 631–643 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Saewan, S., Kumam, P.: A modified Mann iterative scheme by generalized f-projection for a countable family of relatively quasi-nonexpansive mappings and a system of generalized mixed equilibrium problems. Fixed Point Theory Appl. 2011(1), 1–21 (2011)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Saewan, S., Kumam, P.: Existence and algorithm for solving the system of mixed variational inequalities in Banach spaces. J. Appl. Math. 2012 (2012). doi: 10.1155/2012/413468
  8. 8.
    Saewan, S., Kumam, P.: A strong convergence theorem concerning a hybrid projection method for finding common fixed points of a countable family of relatively quasi-nonexpansive mappings. J. Nonlinear Convex Anal. 13(2), 313–330 (2012)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Qin, X., Cho, Y.J., Kang, S.M.: Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces. J. Comput. Appl. Math. 225(1), 20–30 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Qin, X., Shang, M., Su, Y.: A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces. Nonlinear Anal Theory Methods Appl 69(11), 3897–3909 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Takahashi, S., Takahashi, W.: Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. J. Math. Anal. Appl. 331(1), 506–515 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Takahashi, W., Zembayashi, K.: Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces. Nonlinear Anal. Theory Methods Appl. 70(1), 45–57 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Chang, S., Lee, H.W.J., Chan, C.K.: A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization. Nonlinear Anal. Theory Methods Appl. 70(9), 3307–3319 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Plubtieng, S., Ungchittrakool, K.: Strong convergence theorems for a common fixed point of two relatively nonexpansive mappings in a Banach space. J. Approx. Theory 149(2), 103–115 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Zhang, S.: Generalized mixed equilibrium problem in Banach spaces. Appl. Math. Mech. 30(9), 1105–1112 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Saewan, S., Kumam, P.: A generalized f-projection method for countable families of weak relatively nonexpansive mappings and the system of generalized Ky fan inequalities. J. Glob. Optim. 56, 1–23 (2012)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Ishikawa, S.: Fixed points by a new iteration method. Proc. Am. Math. Soc. 44(1), 147–150 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Pettis, B.J.: A proof that every uniformly convex space is reflexive. Duke Math. J. 5(2), 249–253 (1939)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Cioranescu, I.: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, vol. 62. Springer, Dordrecht (1990)CrossRefzbMATHGoogle Scholar
  20. 20.
    Cioranescu, I.: Book review. Bull. Am. Math. Soc 26, 367–370 (1992)CrossRefGoogle Scholar
  21. 21.
    Alber, Y.I.: Metric and generalized projection operators in Banach spaces: properties and applications. Lecture Notes, Pure and Applied Mathematics, pp. 15–50. (1996)Google Scholar
  22. 22.
    Takahashi, W.: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)zbMATHGoogle Scholar
  23. 23.
    Wu, K., Huang, N.: The generalised f-projection operator with an application. Bull. Aust. Math. Soc. 73(2), 307–318 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Fan, J., Liu, X., Li, J.: Iterative schemes for approximating solutions of generalized variational inequalities in banach spaces. Nonlinear Anal. Theory Methods Appl. 70(11), 3997–4007 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Li, X., Huang, N., O’Regan, D.: Strong convergence theorems for relatively nonexpansive mappings in Banach spaces with applications. Comput. Math. Appl. 60(5), 1322–1331 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)CrossRefzbMATHGoogle Scholar
  27. 27.
    Yang, F., Zhao, L., Kim, J.K.: Hybrid projection method for generalized mixed equilibrium problem and fixed point problem of infinite family of asymptotically quasi-\(\phi \)-nonexpansive mappings in banach spaces. Appl. Math. Comput. 218(10), 6072–6082 (2012)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Kamimura, S., Takahashi, W.: Strong convergence of a proximal-type algorithm in a Banach space. SIAM J. Optim. 13(3), 938–945 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Mahato, N.K., Nahak, C.: Hybrid projection methods for the general variational-like inequality problems. J. Adv. Math. Stud. 6(1), 143–158 (2013)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Fan, K.: A minimax inequality and applications. Inequalities 3, 103–113 (1972)MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Nihar Kumar Mahato
    • 1
  • Muhammad Aslam Noor
    • 2
  • Nabin Kumar Sahu
    • 3
  1. 1.Natural Science (Mathematics), Indian Institute of Information TechnologyDesign and ManufacturingJabalpurIndia
  2. 2.Mathematics DepartmentCOMSATS Institute of Information TechnologyIslamabadPakistan
  3. 3.Dhirubhai Ambani Institute of Information and Communication TechnologyGandhinagarIndia

Personalised recommendations