Advertisement

Analysis and Mathematical Physics

, Volume 8, Issue 3, pp 427–436 | Cite as

Lump and lump-soliton solutions to the \((2+1)\)-dimensional Ito equation

  • Jin-Yun Yang
  • Wen-Xiu Ma
  • Zhenyun Qin
Article

Abstract

Based on the Hirota bilinear form of the \((2+1)\)-dimensional Ito equation, one class of lump solutions and two classes of interaction solutions between lumps and line solitons are generated through analysis and symbolic computations with Maple. Analyticity is naturally guaranteed for the presented lump and interaction solutions, and the interaction solutions reduce to lumps (or line solitons) while the hyperbolic-cosine (or the quadratic function) disappears. Three-dimensional plots and contour plots are made for two specific examples of the resulting interaction solutions.

Keywords

Bilinear form Lump solution Soliton solution 

Mathematics Subject Classification

35Q51 35Q53 37K40 

Notes

Acknowledgements

The work was supported in part by a university grant XKY2016112 from Xuzhou Institute of Technology, NSFC under the Grants 11371326, 11301331, and 11371086, NSF under the Grant DMS-1664561, and the Distinguished Professorships by Shanghai University of Electric Power and Shanghai Second Polytechnic University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, New York (2004)CrossRefMATHGoogle Scholar
  2. 2.
    Freeman, N.C., Nimmo, J.J.C.: Soliton solutions of the Korteweg–de Vries and Kadomtsev–Petviashvili equations: the Wronskian technique. Phys. Lett. A 95(1), 1–3 (1983)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Ma, W.X., You, Y.: Solving the Korteweg–de Vries equation by its bilinear form: Wronskian solutions. Trans. Am. Math. Soc. 357(5), 1753–1778 (2005)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ma, W.X.: Wronskian solutions to integrable equations. Discrete Contin. Dyn. Syst. Suppl, 506–515 (2009)MathSciNetMATHGoogle Scholar
  5. 5.
    Wazwaz, A.-M., El-Tantawy, S.A.: New (3 + 1)-dimensional equations of Burgers type and Sharma–Tasso–Olver type: multiple-soliton solutions. Nonlinear Dyn. 87(4), 2457–2461 (2017)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Satsuma, J., Ablowitz, M.J.: Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 20(7), 1496–1503 (1979)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)CrossRefMATHGoogle Scholar
  8. 8.
    Caudrey, P.J.: Memories of Hirota’s method: application to the reduced Maxwell–Bloch system in the early 1970s. Philos. Trans. R. Soc. A 369(1939), 1215–1227 (2011)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Ma, W.X.: Lump solutions to the Kadomtsev–Petviashvili equation. Phys. Lett. A 379(36), 1975–1978 (2015)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Manakov, S.V., Zakharov, V.E., Bordag, L.A., Matveev, V.B.: Two-dimensional solitons of the Kadomtsev–Petviashvili equation and their interaction. Phys. Lett. A 63(3), 205–206 (1977)CrossRefGoogle Scholar
  11. 11.
    Kaup, D.J.: The lump solutions and the Bäcklund transformation for the three-dimensional three-wave resonant interaction. J. Math. Phys. 22(6), 1176–1181 (1981)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Gilson, C.R., Nimmo, J.J.C.: Lump solutions of the BKP equation. Phys. Lett. A 147(8–9), 472–476 (1990)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Yang, J.Y., Ma, W.X.: Lump solutions of the BKP equation by symbolic computation. Int. J. Mod. Phys. B 30(28–29), 1640028 (2016)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Imai, K.: Dromion and lump solutions of the Ishimori-I equation. Prog. Theor. Phys. 98(5), 1013–1023 (1997)CrossRefGoogle Scholar
  15. 15.
    Ma, W.X., You, Y.: Rational solutions of the Toda lattice equation in Casoratian form. Chaos Solitons Fract. 22(2), 395–406 (2004)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Ankiewicz, A., Kedziora, D.J., Akhmediev, N.: Rogue wave triplets. Phys. Lett. A 375(28–29), 2782–2785 (2011)CrossRefMATHGoogle Scholar
  17. 17.
    Gaillard, P.: Rational solutions to the KPI equation and multi rogue waves. Ann. Phys. 367, 1–5 (2016)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Chakravarty, S., Kodama, Y.: Line-soliton solutions of the KP equation. In: Nonlinear and Modern Mathematical Physics, AIP Conference Proceedings, 1212, pp. 312–341. American Institute of Physics, Melville, NY (2010)Google Scholar
  19. 19.
    Aslan, İ.: Rational and multi-wave solutions to some nonlinear physical models. Rom. J. Phys. 58(7–8), 893–903 (2013)MathSciNetGoogle Scholar
  20. 20.
    Zhang, Y., Ma, W.X.: Rational solutions to a KdV-like equation. Appl. Math. Comput. 256, 252–256 (2015)MathSciNetMATHGoogle Scholar
  21. 21.
    Zhang, Y.F., Ma, W.X.: A study on rational solutions to a KP-like equation. Z. Naturforsch. A 70(4), 263–268 (2015)CrossRefGoogle Scholar
  22. 22.
    Zhang, Y., Dong, H.H., Zhang, X.E., Yang, H.W.: Rational solutions and lump solutions to the generalized (3 + 1)-dimensional shallow water-like equation. Comput. Math. Appl. 73(2), 246–252 (2017)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Ma, W.X., Qin, Z.Y., Lü, X.: Lump solutions to dimensionally reduced p-gKP and p-gBKP equations. Nonlinear Dyn. 84(2), 923–931 (2016)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Yu, J.P., Sun, Y.L.: Lump solutions to dimensionally reduced Kadomtsev–Petviashvili-like equations. Nonlinear Dyn. 87(2), 1405–1412 (2017)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Ito, M.: An extension of nonlinear evolution equations of the K-dV (mK-dV) type to higher orders. J. Phys. Soc. Jpn. 49(2), 771–778 (1980)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Wazwaz, A.-M.: Multiple-soliton solutions for the generalized (1 + 1)-dimensional and the generalized (2 + 1)-dimensional Ito equations. Appl. Math. Comput. 202, 840–849 (2008)MathSciNetMATHGoogle Scholar
  27. 27.
    Tang, Y.N., Tao, S.Q., Qing, G.: Lump solitons and the interaction phenomena of them for two classes of nonlinear evolution equations. Comput. Math. Appl. 72(9), 2334–2342 (2016)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Gilson, C., Lambert, F., Nimmo, J., Willox, R.: On the combinatorics of the Hirota D-operators. Proc. R. Soc. Lond. Ser. A 452(1945), 223–234 (1996)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Ma, W.X.: Bilinear equations, Bell polynomials and linear superposition principle. J. Phys. Conf. Ser. 411, 012021 (2013)CrossRefGoogle Scholar
  30. 30.
    Dorizzi, B., Grammaticos, B., Ramani, A., Winternitz, P.: Are all the equations of the Kadomtsev–Petviashvili hierarchy integrable? J. Math. Phys. 27(12), 2848–2852 (1986)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Konopelchenko, B., Strampp, W.: The AKNS hierarchy as symmetry constraint of the KP hierarchy. Inverse Probl. 7(2), L17–L24 (1991)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Li, X.Y., Zhao, Q.L., Li, Y.X., Dong, H.H.: Binary Bargmann symmetry constraint associated with 3 \(\times \) 3 discrete matrix spectral problem. J. Nonlinear Sci. Appl. 8(5), 496–506 (2015)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Dong, H.H., Zhang, Y., Zhang, X.E.: The new integrable symplectic map and the symmetry of integrable nonlinear lattice equation. Commun. Nonlinear Sci. Numer. Simul. 36, 354–365 (2016)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Ma, W.X.: Generalized bilinear differential equations. Stud. Nonlinear Sci. 2(4), 140–144 (2011)Google Scholar
  35. 35.
    Ma, W.X.: Bilinear equations and resonant solutions characterized by Bell polynomials. Rep. Math. Phys. 72(1), 41–56 (2013)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Ma, W.X.: Trilinear equations, Bell polynomials, and resonant solutions. Front. Math. China 8(5), 1139–1156 (2013)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Mathematical and Physical SciencesXuzhou Institute of TechnologyXuzhouPeople’s Republic of China
  2. 2.Department of Mathematics and StatisticsUniversity of South FloridaTampaUSA
  3. 3.College of Mathematics and Systems ScienceShandong University of Science and TechnologyQingdaoPeople’s Republic of China
  4. 4.International Institute for Symmetry Analysis and Mathematical Modelling, Department of Mathematical SciencesNorth-West University Mafikeng CampusMmabathoSouth Africa
  5. 5.School of Mathematics and Key Lab for Nonlinear Mathematical Models and MethodsFudan UniversityShanghaiPeople’s Republic of China
  6. 6.Department of MathematicsZhejiang Normal UniversityJinhuaPeople’s Republic of China
  7. 7.College of Mathematics and PhysicsShanghai University of Electric PowerShanghaiPeople’s Republic of China

Personalised recommendations