Analysis and Mathematical Physics

, Volume 8, Issue 3, pp 325–350 | Cite as

A characterization of essential pseudospectra of the multivalued operator matrix

  • Aymen Ammar
  • Aref JeribiEmail author
  • Bilel Saadaoui


The main goal of this paper is to give a characterization of the essential pseudospectra of \(2\times 2\) matrix of linear relations on a Banach space. We start by giving the definition and we investigate the characterization and some properties of the essential pseudospectra. Furthermore, we apply the obtained result to determine the essential pseudospectra of two-group transport equation with general boundary conditions in the Banach space.


Matrix of linear relation Pseudospectra Selection of linear relation 

Mathematics Subject Classification



Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Álvarez, T., Ammar, A., Jeribi, A.: On the essential spectra of some matrix of lineair relations. Math. Methods Appl. Sci. 37, 620–644 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ammar, A.: A characterization of some subsets of essential spectra of a multivalued linear operator. Complex Anal. Oper. Theory 11(1), 175–196 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ammar, A., Jeribi, A., Saadaoui, B.: Frobenius–Schur factorization for multivalued \(2\times 2\) matrices linear operator. Mediterr. J. Math. 14(1), 14–29 (2017)CrossRefzbMATHGoogle Scholar
  4. 4.
    Ammar, A., Diagana, T., Jeribi, A.: Perturbations of Fredholm linear relations in Banach spaces with application to \(3 \times 3\)-block matrices of linear relations. Arab. J. Math. Sci. 22, 59–76 (2016)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Ammar, A., Jeribi, A.: A characterization of the essential pseudospectra on a Banach space. Arab. J. Math. 2, 139–145 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ammar, A., Jeribi, A.: A characterization of the essential pseudospectra and application to a transport equation. Extr. Math. 28(1), 95–112 (2013)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Ammar, A., Jeribi, A.: Measures of noncompactness and essential pseudospectra on Banach space. Math. Methods Appl. Sci. 37(3), 447–452 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ammar, A., Boukettaya, B., Jeribi, A.: A note on the essential pseudospectra and application. Linear Multilinear Algebra 64(8), 1474–1483 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ammar, A., Daoud, H., Jeribi, A.: Pseudospectra and essential pseudospectra of multivalued linear relations. Mediterr. J. Math. 12(4), 1377–1395 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ammar, A., Daoud, H., Jeribi, A.: The stability of pseudospectra and essential pseudospectra of linear relation. J. Pseudodiffer. Oper. Appl. 7(4), 473–491 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Atkinson, F.V., Langer, H., Mennicken, R., Shkalikov, A.A.: The essential spectrum of some matrix operator. Math. Nachr. 167, 5–20 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Baskakov, A.G., Chernyshov, K.I.: Spectral analysis of linear relations, and degenerate semigroups of operator. Mat. Sb. 193(11), 3–42 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Chafai, E., Mnif, M.: Perturbation of normally solvable linear relations in paracomplete spaces. Linear Algebra Appl. 439(7), 1875–1885 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Cross, R.W.: Multivalued linear operators. Marcel Dekker, New York (1998)zbMATHGoogle Scholar
  15. 15.
    Davies, E.B.: Linear operators and their spectra, Cambridge studies in advanced mathematics, vol. 106. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  16. 16.
    Jeribi, A.: Spectral theory and applications of linear operator and block operator matrices. Springer, New York (2015)CrossRefzbMATHGoogle Scholar
  17. 17.
    Landau, H.J.: On Szego’s eigenvalue distribution theorem and non-Hermitian kernels. J. Anal. Math. 28, 335–357 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Labrousse, J-Ph, Sandovici, A., de Snoo, H.S.V., Winkler, H.: The Kato decomposition of quasi-Fredholm relations. Oper. Matrices 4(1), 1–51 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Langer, H., Markus, A., Matsaev, V., Tretter, G.: Self-adjoint block operator matrices with non-separated diagonal entries and their Schur complements. J. Funct. Anal. 199, 427–451 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Shkalikov, A.A.: On the essential spectrum of some matrix operators. Math. Notes 58(6), 1359–1362 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Trefethen, L.N.: Pseudospectra of matrices, numerical analysis, Pitman Research notes in Mathematics Series (1992), vol. 260. Longman Science and Technology, Harlow (1991)Google Scholar
  22. 22.
    Trefethen, L.N., Embree, M.: Spectra and pseudospectra: the behavior of nonnormal matrices and operators. Princeton University Press, Princeton (2005)zbMATHGoogle Scholar
  23. 23.
    Von Neumann, J.: Functional operator. II. The geometry of orthogonal spaces, annals of mathematics studies, vol. 22. Princeton University Press, Princeton (1950)Google Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.Departement of Mathematics, Faculty of Sciences of SfaxUniversity of SfaxSfaxTunisia

Personalised recommendations