Analysis and Mathematical Physics

, Volume 1, Issue 1, pp 15–35 | Cite as

A note on critical points of integrals of soliton equations

  • I. M. KricheverEmail author
  • D. V. Zakharov


We consider the problem of extending the integrals of motion of soliton equations to the space of all finite-gap solutions. We consider the critical points of these integrals on the moduli space of Riemann surfaces with marked points and jets of local coordinates. We show that the solutions of the corresponding variational problem have an explicit description in terms of real-normalized differentials on the spectral curve. Such conditions have previously appeared in a number of problems of mathematical physics.


Modulus Space Riemann Surface Meromorphic Function Elliptic Curve Marked Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Novikov S.P.: A periodic problem for the Korteweg–de Vries equation. Funct. Anal. Appl. 8(3), 54–66 (1974)Google Scholar
  2. 2.
    Dubrovin B., Matveev V., Novikov S.: Non-linear equations of Korteweg–de Vries type, finite zone linear operators and Abelian varieties. Uspekhi Mat. Nauk 31(1), 55–136 (1976)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Krichever, I.M.: The spectral theory of “finite-gap” nonstationary Schrödinger operators, The nonstationary Peierls model. (Russian) Funct. Anal. Appl. 20(3), 42–54, 96 (1986)Google Scholar
  4. 4.
    Boutroux, P.: Recherches sur les transcendentes de M Painlevé et l’edute asymtotique des équations différentielles du second orddre. Ann Sci Ecol. Norm Supér 30, 255-376 (1913), 31, 99-159 (1914)Google Scholar
  5. 5.
    Krichever, I.M.: On Heizenberg relations for the ordinary linear differential operators. IHES Preprint, Bur-Sur-Yvette (1990)Google Scholar
  6. 6.
    Fucito F., Gamba A., Martellini M., Ragnisco O.: Non-linear WKB analysis of the string equation. Int. J. Mod. Phys. B 6(11–12), 2123–2147 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Grinevich P.G., Novikov S.P.: String equation—2. Physical solution. St. Petersburg Math. J 6, 553 (1995)MathSciNetGoogle Scholar
  8. 8.
    Kapaev, A.A.: Monodromy approach to the scaling limits in the isomonodromy systems. Scholar
  9. 9.
    David F.: Phases of the large-N matrix model and non-perturbative effects in 2D gravity. Nuclear Phys. B 348(4), 507–524 (1991)MathSciNetCrossRefGoogle Scholar
  10. 10.
    David F.: Non-perturbative effects in matrix models and vacua of two dimensional gravity. Phys. Lett. B 302(4), 403–410 (1993)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bertola, M., Mo, M.Y.: Commuting difference operators, spinor bundles and the asymptotics of orthogonal polynomials with respect to varying complex weights (2006). Scholar
  12. 12.
    Lee, S.Y.: Teodorescu, R., Wiegmann, P., Shocks and finite-time singularities in Hele–Shaw flow. Phys D Nonlinear Phenom. 238(14), 1113–1128Google Scholar
  13. 13.
    Krichever I.: The τ-function of the universal Whitham hierarchy, matrix models, and topological field theories. Commun. Pure Appl. Math. 47, 437–475 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Krichever I., Phong D.H.: On the integrable geometry of N = 2 supersymmetric gauge theories and soliton equations. J. Differ. Geom. 45, 445–485 (1997)MathSciNetGoogle Scholar
  15. 15.
    Krichever, I., Phong, D.H.: Symplectic forms in the theory of solitons, Surveys in Differential Geometry IV. In: Terng, C.L., Uhlenbeck, K. (eds.) International Press, Boston, pp. 239–313 (1998)Google Scholar
  16. 16.
    Grushevsky, S., Krichever, I.: The universal Whitham hierarchy and the geometry of the moduli space of pointed Riemann surfaces. arXiv:0810.2139Google Scholar
  17. 17.
    Grushevsky S., Krichever, I.: Vanishing of tautological classes on the moduli space of curves (in preparation)Google Scholar
  18. 18.
    Dzhamay, A.: Real-normalized Whitham hierarchies and the WDVV equations. Int. Math. Res. Notices (21), 1103–1130 (2000)Google Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Columbia UniversityNew YorkUSA
  2. 2.Landau Institute for Theoretical PhysicsMoscowRussia
  3. 3.Kharkevich Institute for Information Transmission ProblemsMoscowRussia

Personalised recommendations