Photonic Sensors

, Volume 9, Issue 4, pp 356–366 | Cite as

All-Organic Waveguide Sensor for Volatile Solvent Sensing

  • Edgars NitissEmail author
  • Arturs Bundulis
  • Andrejs Tokmakovs
  • Janis Busenbergs
  • Martins Rutkis
Open Access


An all-organic Mach-Zehnder waveguide device for volatile solvent sensing is presented. Optical waveguide devices offer a great potential for various applications in sensing and communications due to multiple advantageous properties such as immunity to electromagnetic interference, high efficiency, and low cost and size. One of the most promising areas for applications of photonic systems would be real-time monitoring of various hazardous organic vapor concentrations harmful to human being. The optical waveguide volatile solvent sensor presented here comprises a novel organic material applied as a cladding on an SU-8 waveguide core and can be used for sensing of different vapors such as isopropanol, acetone, and water. It is shown that the reason for the chemical sensing in device is the absorption of vapor into the waveguide cladding which in turn changes the waveguide effective refractive index. The presented waveguide device has small footprint and high sensitivity of the mentioned solvent vapor, particularly that of water. The preparation steps of the device as well as the sensing characteristics are presented and discussed.


Optical sensor waveguide organic materials Mach-Zehnder interference 



This work was supported by ERDF Activity Project Nr. “Application assessment of novel organic materials by prototyping of photonic devices”. We acknowledge Igors MIHAILOVS for valuable discussions.


  1. [1]
    S. Pandey, “Highly sensitive and selective chemiresistor gas/vapor sensors based on polyaniline nanocomposite: a comprehensive review,” Journal of Science: Advanced Materials and Devices, 2016, 1(4): 431–453.Google Scholar
  2. [2]
    O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Analytical Chemistry, 2006, 78(12): 3859–3874.CrossRefGoogle Scholar
  3. [3]
    M. A. Butt, S. N. Khonina, and N. L. Kazanskiy, “Silicon on silicon dioxide slot waveguide evanescent field gas absorption sensor,” Journal of Modern Optics, 2018, 65(2): 174–178.ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    R. Wang, A. Vasiliev, M. Muneeb, A. Malik, S. Sprengel, G. Boehm, et al., “III–V-on-silicon photonic integrated circuits for spectroscopic sensing in the 2–4 μm wavelength range,” Sensors, 2017, 17(8): 1788–1–1788-21.CrossRefGoogle Scholar
  5. [5]
    M. A. Butt, S. A. Degtyarev, S. N. Khonina, and N. L. Kazanskiy, “An evanescent field absorption gas sensor at mid-IR 3.39 μm wavelength,” Journal of Modern Optics, 2017, 64(18): 1892–1897.ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    M. A. Butt, S. N. Khonina, and N. L. Kazanskiy, “Modelling of Rib channel waveguides based on silicon-on-sapphire at 4.67 μm wavelength for evanescent field gas absorption sensor,” Optik, 2018, 168: 692–697.ADSCrossRefGoogle Scholar
  7. [7]
    A. Dhakal, P. C. Wuytens, F. Peyskens, K. Jans, N. Le Thomas, and R. Baets, “Nanophotonic waveguide enhanced Raman spectroscopy of biological submonolayers,” ACS Photonics, 2016, 3(11): 2141–2149.CrossRefGoogle Scholar
  8. [8]
    J. Milvich, D. Kohler, W. Freude, and C. Koos, “Surface sensing with integrated optical waveguides: a design guideline,” Optics Express, 2018, 26(16), 19885–19906.ADSCrossRefGoogle Scholar
  9. [9]
    M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Advances in Optics and Photonics, 2015, 7(2): 168–240.ADSCrossRefGoogle Scholar
  10. [10]
    A. R. Ali and C. M. Elias, “Ultra-sensitive optical resonator for organic solvents detection based on whispering gallery modes,” Chemosensors, 2017, 5(2): 19–1–19-10.CrossRefGoogle Scholar
  11. [11]
    L. L. Páez, K. S. Carracedo, M. H. Rodríguez, I. R. Martín, T. Carmon, and L. L. Martin, “Liquid whispering-gallery-mode resonator as a humidity sensor,” Optics Express, 2017, 25(2): 1165–1172.ADSCrossRefGoogle Scholar
  12. [12]
    O. Hugon, P. Benech, and H. Gagnaire, “Surface plasmon chemical/biological sensor in integrated optics,” Sensors and Actuators B: Chemical, 1998, 51(1): 316–320.CrossRefGoogle Scholar
  13. [13]
    Q. Wu, Y. Semenova, J. Mathew, P. F. Wang, and G. Farrell, “Humidity sensor based on a single-mode hetero-core fiber structure,” Optics Letters, 2011, 36(10): 1752–1754.ADSCrossRefGoogle Scholar
  14. [14]
    P. M. P. Gouvêa, P. Rugeland, M. S. P. Gomes, and W. Margulis, “Component and setup for insertion of gases in a hollow-core optical fiber sensor,” SPIE, 2015, 9634: 96343D-1–96343D-4.ADSGoogle Scholar
  15. [15]
    S. Dante, D. Duval, B. Sepúlveda, A. B. G. Guerrero, J. R. Sendra, and L. M. Lechuga, “All-optical phase modulation for integrated interferometric biosensors,” Optics Express, 2012, 20(7): 7195–7205.ADSCrossRefGoogle Scholar
  16. [16]
    K. Misiakos, I. Raptis, E. Makarona, A. Botsialas, A. Salapatas, P. Oikonomou, et al., “All-silicon monolithic Mach-Zehnder interferometer as a refractive index and bio-chemical sensor,” Optics Express, 2014, 22(22): 26803–26813.ADSCrossRefGoogle Scholar
  17. [17]
    P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Integrated optical sensor using a liquid-core waveguide in a Mach-Zehnder interferometer,” Optics Express, 2008, 16(22): 18164–18172.ADSCrossRefGoogle Scholar
  18. [18]
    N. Fabricius, G. Gauglitz, and J. Ingenhoff, “A gas sensor based on an integrated optical Mach-Zehnder interferometer,” Sensors Actuators B: Chemical, 1992, 7(1): 672–676.CrossRefGoogle Scholar
  19. [19]
    P. J. Skrdla, S. S. Saavedra, N. R. Armstrong, S. B. Mendes, and N. Peyghambarian, “Sol−Gel-based, planar waveguide sensor for water vapor,” Analytical Chemistry, 1999, 71(7): 1332–1337.CrossRefGoogle Scholar
  20. [20]
    L. Yang, S. S. Saavedra, and N. R. Armstrong, “Sol−Gel-based, planar waveguide sensor for gaseous iodine,” Analytical Chemistry, 1996, 86(11): 1834–1841.CrossRefGoogle Scholar
  21. [21]
    Z. Zhang, D. F. Lu, and Z. M. Qi, “Application of porous TiO2 thin films as wavelength-interrogated waveguide resonance sensors for bio/chemical detection,” The Journal of Physical Chemistry C, 2012, 116(6): 3342–3348.CrossRefGoogle Scholar
  22. [22]
    R. Amberkar, Z. Gao, J. Park, D. B. Henthorn, and C. S. Kim, “Process development for waveguide chemical sensors with integrated polymeric sensitive layers,” SPIE, 2008, 6886: 68860U-1–68860U-8.ADSGoogle Scholar
  23. [23]
    F. L. Alves, I. M. Raimundo, I. F. Gimenez, and O. L. Alves, “An organopalladium-PVC membrane for sulphur dioxide optical sensing,” Sensors Actuators B Chemical, 2005, 107(1): 47–52.CrossRefGoogle Scholar
  24. [24]
    A. Gastón, F. Pérez, and J. Sevilla, “Optical fiber relative-humidity sensor with polyvinyl alcohol film,” Applied Optics, 2004, 43(21): 4127–4132.ADSCrossRefGoogle Scholar
  25. [25]
    N. Zhao, G. Qian, X. C. Fu, L. J. Zhang, W. Hu, R. Z. Li, et al., “Integrated optical displacement sensor based on asymmetric Mach-Zehnder interferometer chip,” Optical Engineering, 2017, 56(2): 027109–1–027109-6.ADSCrossRefGoogle Scholar
  26. [26]
    Y. Huang, G. T. Paloczi, J. K. S. Poon, and A. Yariv, “Demonstration of flexible freestanding all-polymer integrated optical ring resonator devices,” Advanced Materials, 2004, 16(1): 44–48.CrossRefGoogle Scholar
  27. [27]
    M. Crawford, “Wearable technology is booming, powered by photonics,” SPIE, 2016, DOI: 10.1117/2.2201606.01.Google Scholar
  28. [28]
    E. Nitiss, J. Busenbergs, A. Tokmakovs, and M. Rutkis, “Preparation of an organic waveguide electro-optic modulator operating in the visible spectral range,” Sensors Transducers, 2018, 225(9): 19–24.Google Scholar
  29. [29]
    V. Ballenger, J. K. Commerçon, J. Verdu, and P. Tordjeman, “Interactions of solvents with poly (methyl methacrylate),” Polymer, 1997, 38(16): 4175–4184.CrossRefGoogle Scholar
  30. [30]
    M. Matsuguchi, Y. Sadaoka, Y. Sakai, T. Kuroiwa, and A. Ito, “A capacitive-type humidity sensor using cross-linked poly (methyl methacrylate) thin films,” Journal of The Electrochemical Society, 1991, 138(6): 1862–1865.CrossRefGoogle Scholar
  31. [31]
    E. Nitiss, A. Tokmakovs, K. Pudzs, J. Busenbergs, and M. Rutkis, “All-organic electro-optic waveguide modulator comprising SU-8 and nonlinear optical polymer,” Optics Express, 2017, 25(25): 31036–31044.ADSCrossRefGoogle Scholar
  32. [32]
    K. Traskovskis, I. Mihailovs, A. Tokmakovs, V. Kokars, and M. Rutkis, “An improved molecular design of obtaining NLO active molecular glasses using triphenyl moieties as amorphous phase formation enhancers,” SPIE, 2012, 8434: 84341P-1–84341P-8.ADSGoogle Scholar
  33. [33]
    E. Nitiss, “Evaluation of performance of a hybrid electro-optic directional coupler and a Mach-Zehnder switch,” Journal of Nanophotonics, 2017, 11(1): 016013–1–016013-12.ADSCrossRefGoogle Scholar
  34. [34]
    Y. Li, T. Täffner, M. Bischoff, and B. Niemeyer, “Test gas generation from pure liquids: an application-oriented overview of methods in a nutshell,” International Journal of Chemical Engineering, 2012, 2012: 417029–1–417029-6.CrossRefGoogle Scholar
  35. [35]
    D. I. Johnson and G. E. Town, “Refractive index and thermo-optic coefficient of composite polymers at 1.55 μm,” SPIE, 2005, 6038: 603821–1–603821-8.Google Scholar
  36. [36]
    J. H. Schmid, M. Ibrahim, P. Cheben, J. Lapointe, S. Janz, P. J. Bock, et al., “Temperature-independent silicon subwavelength grating waveguides,” Optics Letters, 2011, 36(11): 2110–2112.ADSCrossRefGoogle Scholar
  37. [37]
    Y. Sun, Y. Cao, Y. Yi, L. Tian, Y. Zheng, J. Zheng, et al., “A low-power consumption MZI thermal optical switch with a graphene-assisted heating layer and air trench,” RSC Advances, 2017, 7(63): 39922–39927.CrossRefGoogle Scholar
  38. [38]
    A. Densmore, S. Janz, R. Ma, J. H. Schmid, D. X. Xu, A. Delâge, et al., “Compact and low power thermo-optic switch using folded silicon waveguides,” Optics Express, 2009, 17(13): 10457–10465.ADSCrossRefGoogle Scholar
  39. [39]
    D. Pérez, J. Fernández, R. Baños, J. D. Doménech, A. M. Sánchez, J. M. Cirera, et al., “Thermal tuners on a silicon nitride platform,” ArXiv, 2016, pp. 1–13.Google Scholar
  40. [40]
    B. X. Jing, J. Zhao, Y. Wang, X. Yi, and H. L. Duan, “Water-swelling-induced morphological instability of a supported polymethyl methacrylate thin film,” Langmuir, 2010, 26(11): 7651–7655.CrossRefGoogle Scholar
  41. [41]
    K. Tanaka, Y. Fujii, H. Atarashi, K. I. Akabori, M. Hino, and T. Nagamura, “Nonsolvents cause swelling at the interface with poly (methyl methacrylate) films,” Langmuir, 2007, 24(1): 296–301.CrossRefGoogle Scholar
  42. [42]
    G. Geertz, J. Wieser, I. Alig, and G. Heinrich, “Modeling of moisture-induced stress in PMMA: a simple approach to consider sorption behavior in FEM,” Polymer Engineering and Science, 2017, 57(1): 3–12.CrossRefGoogle Scholar
  43. [43]
    J. E. Saunders, H. Chen, C. Brauer, M. G. Clayton, W. J. Chen, J. A. Barnes, et al., “Quantitative diffusion and swelling kinetic measurements using large-angle interferometric refractometry,” Soft Matter, 2015, 11(45): 8746–8757.ADSCrossRefGoogle Scholar
  44. [44]
    K. Süvegh, M. Klapper, A. Domján, S. Mullins, W. Wunderlich, and A. Vértes, “Free volume distribution in monodisperse and polydisperse poly (methyl methacrylate) samples,” Macromolecules, 1999, 32(2): 1147–1151.ADSCrossRefGoogle Scholar
  45. [45]
    J. S. Papanu, D. W. Hess, D. S. Soane (Soong), and A. T. Bell, “Swelling of poly (methyl methacrylate) thin films in low molecular weight alcohols,” Journal of Applied Polymer Science, 1990, 39(4): 803–823.CrossRefGoogle Scholar
  46. [46]
    J. M. Zielinski and J. L. Duda, “Predicting polymer/solvent diffusion coefficients using free-volume theory,” AIChE Journal, 1992, 38(3): 405–415.CrossRefGoogle Scholar
  47. [47]
    S. Das and V. Jayaraman, “SnO2: a comprehensive review on structures and gas sensors,” Progress in Materials Science, 2014, 66: 112–255.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Edgars Nitiss
    • 1
    Email author
  • Arturs Bundulis
    • 1
  • Andrejs Tokmakovs
    • 1
  • Janis Busenbergs
    • 1
  • Martins Rutkis
    • 1
  1. 1.Institute of Solid State PhysicsUniversity of LatviaRigaLatvia

Personalised recommendations