Photonic Sensors

, Volume 9, Issue 2, pp 135–141 | Cite as

Optical Rotation Detection for Atomic Spin Precession Using a Superluminescent Diode

  • Xuejing Liu
  • Yang Li
  • Hongwei Cai
  • Ming DingEmail author
  • Jiancheng Fang
  • Wei Jin
Open Access


A superluminescent diode (SLD) as an alternative of laser is used to detect optical rotation for atomic spin precession. A more uniform Gauss configuration without additional beam shaping and a relatively high power of the SLD have a potential for atomic magnetometers, which is demonstrated in theory and experiments. In addition, the robustness and compactness enable a more practical way for optical rotation detections, especially for applications in magnetoencephalography systems.


Superluminescent diode atomic magnetometer magnetoencephalography atomic spin precession detection Larmor precession 



This work is supported by the National Key Research and Development Program of China under Grant Nos. 2017YFB0503100 and 2016YFB051600.


  1. [1]
    W. Happer and B. S. Mathur, “Off-resonant light as a probe of optically pumped alkali vapors,” Physical Review Letters, 1967, 18(15): 577–580.ADSCrossRefGoogle Scholar
  2. [2]
    H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Applied Physics Letters, 2010, 97(15): 151110-1–151110-4.ADSCrossRefGoogle Scholar
  3. [3]
    D. Cohen, “Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer,” Science, 1972, 175(4022): 664–666.ADSCrossRefGoogle Scholar
  4. [4]
    D. Budker, “Atomic physics-A new spin on magnetometry,” Nature, 2003, 422(6932): 574–575.ADSCrossRefGoogle Scholar
  5. [5]
    H. Xia, A. B. A. Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Applied Physics Letters, 2006, 75(21): 211104-1–211104-3.ADSGoogle Scholar
  6. [6]
    R. Wyllie, M. Kauer, G. S. Smetana, R. T. Wakai, and T. G. Walker, “Magnetocardiography with a modular spin-exchange relaxation-free atomic magnetometer array,” Physics in Medicine and Biology, 2012, 57(9): 2619–2632.ADSCrossRefGoogle Scholar
  7. [7]
    E. Boto, N. Holmes, J. Leggett, G. Roberts, V. K. Shah, S. S. Meyer, et al., “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature, 2018, 555(7698): 657–661.ADSCrossRefGoogle Scholar
  8. [8]
    T. Sander, J. Preusser, R. R. Mhaskar, J. Kitching, L. Trahms, and S. Knappe, “Magnetoencephalography with a chip-scale atomic magnetometer,” Biomedical Optics Express, 2012, 3(5): 981–990.CrossRefGoogle Scholar
  9. [9]
    A. Borna, T. R. Carter, P. Derego, C. D. James, and P. D. D. Schwindt, “Magnetic source imaging using a pulsed optically pumped magnetometer array,” IEEE Transactions on Instrumentation and Measurement, 2018, 68(2): 493–501.CrossRefGoogle Scholar
  10. [10]
    A. Weis, “Optically pumped alkali magnetometers for biomedical applications,” Europhysics News, 2012, 43(3): 20–23.CrossRefGoogle Scholar
  11. [11]
    C. Johnson, N. L. Adolphi, K. L. Butler, D. M. Lovato, R. Larson, P. D. D. Schwindt, et al., “Magnetic relaxometry with an atomic magnetometer and SQUID sensors on targeted cancer cells,” Journal of Magnetism and Magnetic Materials, 2012, 324(17): 2613–2619.ADSCrossRefGoogle Scholar
  12. [12]
    A. Weis, S. Colombo, V. Dolgovskiy, Z. D. Grujic, V. N. Lebedev, and J. Zhang, “Characterizing and imaging magnetic nanoparticles by optical magnetometry,” Journal of Physics Conference Series, 2017, 793(1): 012032-1–012032-4.Google Scholar
  13. [13]
    G. Bison, N. Castagna, A. Hofer, P. Knowles, J. L. Schenker, M. Kasprzak, et al., “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Applied Physics Letters, 2009, 95(17): 173701-1–173701-3.ADSCrossRefGoogle Scholar
  14. [14]
    E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, et al., “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature, 2018, 555(7698): 657–661.ADSCrossRefGoogle Scholar
  15. [15]
    C. Johnson, P. D. D. Schwindt, and M. Weisend, “Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer,” Applied Physics Letters, 2010, 97(24): 413–375.CrossRefGoogle Scholar
  16. [16]
    R. Wyllie, M. Kauer, G. S. Smetana, R. T. Wakai, and T. G. Walker, “Magnetocardiography with a modular spin-exchange relaxation-free atomic magnetometer array,” Physics in Medicine and Biology, 2012, 57(9): 2619–2132.ADSCrossRefGoogle Scholar
  17. [17]
    A. Borna, T. R. Carter, J. D. Goldberg, A. P. Colombo, Y. Jau, C. Berry, et al., “A 20-channel magnetoencephalography system based on optically pumped magnetometers,” Physics in Medicine and Biology, 2017, 62(23): 8909–8923.ADSGoogle Scholar
  18. [18]
    N. Shibata, M. Ohashi, T. Wakabayashi, K. Tsuchiya, S. I. Furukawa, H. Mizuguchi, et al., “Polarization mode coupling and spatial power spectrum of fluctuations along a highly birefringent holey fiber,” Journal of Lightwave Technology, 2009, 27(10): 1269–1278.ADSCrossRefGoogle Scholar
  19. [19]
    D. V. Kuksenkov, H. Temkin, and S. Swirhun, “Polarization instability and relative intensity noise in vertical-cavity surface-emitting lasers,” Applied Physics Letters, 1995, 67(15): 2141–2143.ADSCrossRefGoogle Scholar
  20. [20]
    K. D. Choquette, R. P. Schneider, K. L. Lear, and R. E. Leibenguth, “Gain-dependent polarization properties of vertical-cavity lasers,” IEEE Journal of Selected Topics in Quantum Electronics, 1995, 1(2): 661–666.ADSCrossRefGoogle Scholar
  21. [21]
    J. C. Camparo and R. MacKay, “Spectral mode changes in an alkali rf discharge,” Journal of Applied Physics, 2007, 101(5): 53303-1–53303-6.ADSCrossRefGoogle Scholar
  22. [22]
    A. Dandridge and A. B. Tveten, “Noise reduction in fiber-optic interferometer systems,” Applied Optics, 1981, 20(14): 2337–2339.ADSCrossRefGoogle Scholar
  23. [23]
    T. Komljenovic, M. A. Tran, M. Belt, S. Gundavarapu, D. J. Blumenthal, and J. E. Bowers, “Frequency modulated lasers for interferometric optical gyroscopes,” Optics Letters, 2016, 41(8): 1773–1776.ADSCrossRefGoogle Scholar
  24. [24]
    G. M. Müller, X. Gu, L. Yang, A. Frank, and K. Bohnert, “Inherent temperature compensation of fiber-optic current sensors employing spun highly birefringent fiber,” Optics Express, 2016, 24(10): 11164–11173.ADSCrossRefGoogle Scholar
  25. [25]
    K. Bohnert, P. Gabus, J. Nehring, H. Brändle, and M. G. Brunzel, “Fiber-optic current sensor for electrowinning of metals,” Journal of Lightwave Technology, 2007, 25(11): 3602–3609.ADSCrossRefGoogle Scholar
  26. [26]
    M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Physical Review A, 2008, 77(3): 033408-1–033408-8.ADSCrossRefGoogle Scholar
  27. [27]
    S. J. Seltzer, “Developments in alkali-metal atomic magnetometry,” Ph.D. dissertation, Princeton University, Princeton, New Jersey, USA, 2008.Google Scholar
  28. [28]
    M. V. Romalis, “Hybrid optical pumping of optically dense alkali-metal vapor without quenching gas,” Physical Review Letters, 2010, 105(24): 243001-1–243001-4.ADSCrossRefGoogle Scholar
  29. [29]
    J. C. Fang, T. Wang, W. Quan, H. Yuan, H. Zhang, Y. Li, et al., “In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect,” Review of Scientific Instruments, 2014, 85(6): 63108-1–063108-7.CrossRefGoogle Scholar
  30. [30]
    G. Vasilakis, J. M. Brown, T. W. Kornack, and M. Romalis, “Limits on new long range nuclear spin-dependent forces set with a K-3He comagnetometer,” Physical Review Letters, 2009, 103(26): 261801-1–261801-4.ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Xuejing Liu
    • 1
  • Yang Li
    • 1
  • Hongwei Cai
    • 1
  • Ming Ding
    • 1
    Email author
  • Jiancheng Fang
    • 1
  • Wei Jin
    • 1
  1. 1.School of Instrumentation Science and Opto-electronics EngineeringBeihang UniversityBeijingChina

Personalised recommendations