Advertisement

Laser Wavelength Estimation Method Based on a High-Birefringence Fiber Loop Mirror

  • Ricardo I. Álvarez-Tamayo
  • Patricia Prieto-Cortés
  • Manuel Durán-Sánchez
  • Baldemar Ibarra-Escamilla
  • Antonio Barcelata-Pinzón
  • Evgeny A. Kuzin
Open Access
Regular
  • 12 Downloads

Abstract

A simple method for the estimation of the wavelength of a fiber laser system is proposed. The method is based on the use of a high-birefringence-fiber loop mirror (HBFLM). The HBFLM exhibits a periodic transmission/reflection spectrum whose spectral characteristics are determined by the length and temperature of the high-birefringence fiber (HBF). Then, by the previous characterization of the HBFLM spectral transmission response, the central wavelength of the generated laser line can be estimated. By using a photodetector, the wavelength of the laser line is estimated during an HBF temperature scanning by measuring the temperature at which the maximum transmitted power of the HBFLM is reached. The proposed method is demonstrated in a linear cavity tunable Er/Yb fiber laser. This method is a reliable and low-cost alternative for laser wavelength determination in short wavelength ranges without the use of specialized and expensive equipment.

Keywords

Wavelength meter fiber lasers fiber optical loop mirror high-birefringence fiber 

Notes

Acknowledgment

This research works is supported in part by CONACyT Project under Grant No. CB-256401. Ricardo I. Alvarez-Tamayo and Manuel Durán- Sánchez appreciate the support from the Cátedras- CONACyT Program.

References

  1. [1]
    D. A. Solomakha and A. K. Toropov, “Laser wavelength measurements (review),” Soviet Journal of Quantum Electronics, 1977, 7(8): 929–942.ADSCrossRefGoogle Scholar
  2. [2]
    M. Dobosz and M. Kozuchowski, “Overview of the laser-wavelength measurement methods,” Optics and Laser in Engineering, 2017, 98: 107–117.ADSCrossRefGoogle Scholar
  3. [3]
    J. H. Cordero, V. A. Kozlov, A. L. G. Carter, and T. F. Morse, “Highly accurate method for single-mode fiber laser wavelength measurement,” IEEE Photonics Technology Letters, 2002, 14(1): 83–85.ADSCrossRefGoogle Scholar
  4. [4]
    C. C. Chan, W. Jin, H. L. Ho, and M. S. Demokan, “Performance analysis of a time-division-multiplexed fiber Bragg grating sensor array by use of a tunable laser source,” IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(5): 741–749.ADSCrossRefGoogle Scholar
  5. [5]
    P. J. Fox, R. E. Scholten, M. R. Walkiewicz, and R. E. Drullinger, “A reliable, compact, and low-cost Michelson wavemeter for laser wavelength measurement,” American Journal of Physics, 1999, 67(7): 624–630.ADSCrossRefGoogle Scholar
  6. [6]
    U. R. Ortega, “Automated method for wavelength estimation in a two-beam interferometer based on the on-off switching of two laser-diode sources,” European Journal of Physics, 2017, 38(4): 045303–1–045303–4.ADSCrossRefGoogle Scholar
  7. [7]
    L. P. Yan, B. Y. Chen, W. F. Yang, R. F. Wei, and S. W. Zhao, “A novel laser wavelength meter based on the measurement of synthetic wavelength,” Review of Scientific Instruments, 2010, 81(11): 115104–1–115104–6.ADSCrossRefGoogle Scholar
  8. [8]
    A. Morales, J. Urquijo, and A. Mendoza, “Vertical high-precision Michelson wavemeter,” Review of Scientific Instruments, 1993, 64(1): 76–81.ADSCrossRefGoogle Scholar
  9. [9]
    D. Das, A. Banerjee, S. Barthwal, and V. Natarajan, “A rubidium-stabilized ring-cavity resonator for optical frequency metrology: precise measurement of the D1 line in 133Cs,” European Physics Journal D, 2006, 38(3): 545–552.ADSCrossRefGoogle Scholar
  10. [10]
    M. Norgia, A. Pesatori, and C. Svelto, “Novel interferometric method for the measurement of laser wavelength/frequency-modulation sensitivity,” IEEE Transactions on Instrumentation and Measurement, 2007, 56(4): 1373–1376.CrossRefGoogle Scholar
  11. [11]
    J. Ye, H. Schnatz, and L. W. Hollberg, “Optical frequency combs: from frequency metrology to optical phase control,” IEEE Journal of Quantum Electronics, 2003, 9(4): 1041–1058.CrossRefGoogle Scholar
  12. [12]
    J. Zhang, Z. H. Lu, Y. H. Wang, T. Liu, A. Stejskal, Y. N. Zhao, et al., “Exact frequency comb mode number determination in precision optical frequency measurements,” Laser Physics, 2007, 17(17): 1025–1028.ADSCrossRefGoogle Scholar
  13. [13]
    H. J. Caulfied and A. Zavalin, “A nano/micro’ meso’ scale self-calibrating integrated optical wavelength and intensity meter,” Applied Physics B, 2006, 84(1–2): 275–279.CrossRefGoogle Scholar
  14. [14]
    F. Alhassen, P. Z. Dashiti, H. P. Lee, Q. Li, and C. Kim, “A compact all-fiber PDL-compensated acustooptic wavelength monitor,” IEEE Photonics Technology Letters, 2005, 17(10): 2131–2133.ADSCrossRefGoogle Scholar
  15. [15]
    D. Cooper and P. Smith, “Simple and highly sensitive method for wavelength measurement of low-power time-multiplexed signals using optical amplifiers,” Journal of Ligthwave Technology, 2003, 21: 1612–1620.ADSCrossRefGoogle Scholar
  16. [16]
    Q. Wang and G. Farrell, “Multimode-fiber-based edge filter for optical wavelength measurement application and its design,” Microwave and Optical Technology Letters, 2006, 48(5): 900–902.CrossRefGoogle Scholar
  17. [17]
    M. Dobosz and M. Kozuchowski, “Interference comparator for laser diode wavelength and wavelength instability measurement,” Review of Scientific Instruments, 2016, 87(4): 736–757.CrossRefGoogle Scholar
  18. [18]
    J. Kang, X. Y. Dong, C. L. Zhao, W. W. Qian, and M. C. Li, “Simultaneous measurement of strain and temperature with a long-period fiber grating inscribed Sagnac interferometer,” Optics Communications, 2011, 248: 2145–2148.ADSCrossRefGoogle Scholar
  19. [19]
    M. Bravo, A. M. R. Pinto, M. L. Amo, J. Kobelke, and K. Schuster, “High precision micro-displacement fiber sensor through a suspended-core Sagnac interferometer,” Optics Letters, 2012, 37(2): 202–204.ADSCrossRefGoogle Scholar
  20. [20]
    X. B. Zheng, Y. G. Liu, Z. Wang, T. T. Han, C. L. Wei, and J. J. Chen, “Transmission and temperature sensing characteristics of a selective liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Applied Physics Letters, 2012, 100(14): 141104–1–141104–4.ADSCrossRefGoogle Scholar
  21. [21]
    J. Shi, Y. Y. Wang, D. G. Xu, H. W. Zhang, G. H. Su, L. C. Duan, et al., “Temperature sensor based on fiber ring laser with Sagnac loop,” IEEE Photonics Technology Letters, 2012, 28(7): 794–797.ADSCrossRefGoogle Scholar
  22. [22]
    Y. H. Yang, W. Q. Duan, and Y. Miao, “High precision measurement technology for beat length of birefringence optical fiber,” Measurement Science and Technology, 2013, 24(2): 25201–25205.CrossRefGoogle Scholar
  23. [23]
    Y. H. Yang, F. L. Yang, H. Wang, W. Yang, and W. Jin, “Temperature insensitive hydrogen sensor with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” Journal of Lightwave Technology, 2015, 33(12): 2566–2571.ADSCrossRefGoogle Scholar
  24. [24]
    R. I. Á. Tamayo, M. D. Sánchez, A. B. Pinzón, P. P. Cortés, A. F. R. Berlanga, A. A. C. Guzmán, et al., “Intracavity absorption gas sensor in the near-infrared region by using a tunable erbiumdoped fiber laser based on a Hi-Bi FOLM,” SPIE, 2018, 10654: 1065413–1–1065413–7.Google Scholar
  25. [25]
    R. I. Á. Tamayo, M. D. Sánchez, O. Pottiez, E. A. Kuzin, B. I. Escamilla, and A. F. Rosas, “Theoretical and experimental analysis of tunable Sagnac high-birefringence loop filter for dual-wavelength laser application,” Applied Optics, 2011, 50(3): 253–260.ADSCrossRefGoogle Scholar
  26. [26]
    M. A. Mirza and G. Stewart, “Theory and design of a simple tunable Sagnac loop filter for multiwavelength fiber lasers,” Applied Optics, 2008, 47(29): 5242–5252.ADSCrossRefGoogle Scholar
  27. [27]
    E. A. Kuzin, H. C. Nuñez, and N. Korneev, “Alignment of a birefringent fiber Sagnac interferometer by fiber twist,” Optics Communications, 1999, 160: 37–41.ADSCrossRefGoogle Scholar
  28. [28]
    R. I. Á. Tamayo, M. D. Sánchez, O. Pottiez, B. I. Escamilla, J. L. Cruz, M. V. Andrés, et al., “A dual-wavelength tunable laser with superimposed fiber Bragg gratings,” Laser Physics, 2013, 23(5): 055104.ADSCrossRefGoogle Scholar
  29. [29]
    M. D. Sánchez, A. F. Rosas, R. I. Á. Tamayo, E. A. Kuzin, O. Pottiez, M. B. Jimenez, et al., “Fine adjustment of cavity loss by Sagnac loop for a dual wavelength generation,” Laser Physics, 2010, 20(5): 1270–1273.ADSCrossRefGoogle Scholar
  30. [30]
    M. D. Sánchez, E. A. Kuzin, O. Pottiez, B. I. Escamilla, A. G. Garcia, F. M. Ordoñez, et al., “Tunable dual-wavelegnth actively Q-switched Er/Yb double-clad fiber laser,” Laser Physics Letters, 2014, 11(1): 015102.ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Ricardo I. Álvarez-Tamayo
    • 1
  • Patricia Prieto-Cortés
    • 2
  • Manuel Durán-Sánchez
    • 3
  • Baldemar Ibarra-Escamilla
    • 4
  • Antonio Barcelata-Pinzón
    • 5
  • Evgeny A. Kuzin
    • 4
  1. 1.Faculty of Physical-Mathematical SciencesCONACYT–Universidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico
  2. 2.Faculty of Physical-Mathematical SciencesUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico
  3. 3.Optics departmentCONACYT–Instituto Nacional de Astrofísica, Óptica y ElectrónicaTonantzintlaMexico
  4. 4.Optics department, Instituto Nacional de AstrofísicaÓptica y ElectrónicaTonantzintlaMexico
  5. 5.Mechatronics divisionUniversidad Tecnológica de PueblaPueblaMexico

Personalised recommendations