Advertisement

Photonic Sensors

, Volume 9, Issue 2, pp 97–107 | Cite as

Application of MZI Symmetrical Structure With Fiber Balls and Seven-Core Fiber in Microdisplacement Measurement

  • Liming Zhao
  • Hong Li
  • Yanming Song
  • Mingli DongEmail author
  • Lianqing ZhuEmail author
Open Access
Regular
  • 75 Downloads

Abstract

An optical fiber microdisplacement sensor based on symmetric Mach-Zehnder interferometer (MZI) with a seven-core fiber and two single-mode fiber balls is proposed. The rationality and manufacturing process of the MZI sensing structure are analyzed. The fabrication mechanism of the Mach-Zehnder sensor by CO2 laser is described in detail. Experimental results show that temperature sensitivities of the two dips are 98.65 pm/°C and 89.72 pm/°C, respectively. The microdisplacement sensitivities are 2017.71 pm/mm and 2457.92 pm/mm, respectively. The simultaneous measurement of temperature and microdisplacement is demonstrated based on the sensitive matrix. The proposed Mach-Zehnder interference sensor exhibits the advantages of compact structure, simple manufacturing process, and high reliability.

Keywords

Microdisplacement Mach-Zehnder interferometer fiber ball symmetrical structure seven-core fiber 

Notes

Acknowledgment

This work was supported by the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT_16R07), the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions (Grant No. IDHT20170510), the 111 Project (Grant No. D17021), and Research Project of Beijing Education Committee (Grant No. Reseach on all-in-fiber integrated MZI sensor fabricated by CO2 laser).

References

  1. [1]
    A. Babu and B. George, “Design and development of a new non-contact inductive displacement sensor,” IEEE Sensors Journal, 2018, 18(3): 976–984.ADSCrossRefGoogle Scholar
  2. [2]
    S. Rana, B. George, and V. J. Kumar, “An efficient digital converter for a non-contact inductive displacement sensor,” IEEE Sensors Journal, 2018, 18(1): 263–272.ADSCrossRefGoogle Scholar
  3. [3]
    X. Rimpault, E. B. Nehme, M. Balazinski, and J. R. R. Mayer, “Online monitoring and failure detection of capacitive displacement sensor in a Capball device using fractal analysis,” Measurement, 2018, 118: 23–28.CrossRefGoogle Scholar
  4. [4]
    A. Arifin, A. M. Hatta, Sekartedjo, M. S. Muntini, and A. Rubiyanto, “Long-range displacement sensor based on SMS fiber structure and OTDR,” Photonic Sensors, 2015, 5(2): 166–171.ADSCrossRefGoogle Scholar
  5. [5]
    M. Sethuramalingam and U. Subbiah, “Enhancing the linearity characteristics of photoelectric displacement sensor based on extreme learning machine method,” Photonic Sensors, 2015, 5(1): 24–31.ADSCrossRefGoogle Scholar
  6. [6]
    X. L. Xie, B. W. Wang, L. L. Zhou, L. Weng, and Y. Sun, “Research on torsional ultrasonic attenuation characteristics of the magnetostrictive displacement sensor waveguide,” Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2018, 33(3): 689–696.Google Scholar
  7. [7]
    S. M. Chen, Y. Liu, X. X. Liu, Y. Zhang, and W. Peng, “Self-compensating displacement sensor based on hydramatic structured transducer and fiber Bragg grating,” Photonic Sensors, 2015, 5(4): 351–356.ADSCrossRefGoogle Scholar
  8. [8]
    C. Zhong, C. Y. Shen, J. L. Chu, X. Zou, K. Li, Y. X. Jin, et al., “A displacement sensor based on a temperature-insensitive double trapezoidal structure with fiber Bragg grating,” IEEE Sensors Journal, 2012, 12(5): 1280–1283.ADSCrossRefGoogle Scholar
  9. [9]
    C. W. Shangguan, W. He, W. Zhnag, F. Luo, and L. Q. Zhu, “Optical fiber Fabry-Perot displacement sensor based on chemical etching method,” Semiconductor Optoelectronics, 2018, 39(02): 170–173.Google Scholar
  10. [10]
    C. Liu, W. Zhang, M. L. Dong, X. P. Lou, and L. Q. Zhu, “Dual-parameter sensing characteristics of long period fiber grating cascaded with fiber MZ structure fabricated by CO2 laser,” Infrared & Laser Engineering, 2017, 46(9): 922001–922007.CrossRefGoogle Scholar
  11. [11]
    Y. Wang, Y. H. Li, C. R. Liao, D. N. Wang, M. W. Yang, and P. X. Lu, “High-temperature sensing using miniaturized fiber in-line Mach-Zehnder interferometer,” IEEE Photonics Technology Letters, 2009, 22(1): 39–41.ADSCrossRefGoogle Scholar
  12. [12]
    H. S. Lin, Y. M. Raji, J. H. Lim, S. K. Liu, M. R. Mokhtar, and Z. Yusoff, “Packaged in-line Mach-Zehnder interferometer for highly sensitive curvature and flexural strain sensing,” Sensors & Actuators A: Physical, 2016, 250: 237–242.CrossRefGoogle Scholar
  13. [13]
    J. P. Chen, J. Zhou, and Z. H. Jia, “High-sensitivity displacement sensor based on a bent fiber Mach-Zehnder interferometer,” IEEE Photonics Technology Letters, 2013, 25(23): 2354–2357.ADSCrossRefGoogle Scholar
  14. [14]
    C. Y. Shen, J. L. Chu, Y. F. Lu, D. B. Chen, C. Zhong, Y. Li, et al., “High sensitive micro-displacement sensor based on M-Z interferometer by a bowknot type taper,” IEEE Photonics Technology Letters, 2013, 26(1): 62–65.ADSCrossRefGoogle Scholar
  15. [15]
    S. Zhou, B. Huang, and X. W. Shu, “A multi-core fiber based interferometer for high temperature sensing,” Measurement Science & Technology, 2017, 28(4): 045107.ADSCrossRefGoogle Scholar
  16. [16]
    L. Duan, P. Zhang, M. Tang, R. X. Wang, Z. Y. Zhao, S. N. Fu, et al., “Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing,” Optics Express, 2016, 24(18): 20210–20217.ADSCrossRefGoogle Scholar
  17. [17]
    B. Yin, Y. Li, Z. B. Liu, S. C. Feng, Y. L. Bai, Y. Xu, et al., “Investigation on a compact inline multimode-single-mode-multimode fiber structure,” Optics & Laser Technology, 2016, 80: 16–21.ADSCrossRefGoogle Scholar
  18. [18]
    L. C. Li, L. Xia, Z. H. Xie, and D. M. Liu, “All-fiber Mach-Zehnder interferometers for sensing applications,” Optics Express, 2012, 20(10): 11109–11120.ADSCrossRefGoogle Scholar
  19. [19]
    D. Wu, T. Zhu, K. S. Chiang, and M. Deng, “All single-mode fiber Mach-Zehnder interferometer based on two peanut-shape structures,” Journal of Lightwave Technology, 2012, 30(5): 805–810.ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://doi.org/creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Beijing Laboratory of Optical Fiber Sensing and SystemBeijing Information Science & Technology UniversityBeijingChina
  2. 2.Beijing Key Laboratory of Optoelectronic Measurement TechnologyBeijing Information Science & Technology UniversityBeijingChina
  3. 3.Overseas Expertise Introduction Center for Discipline Innovation (“111 Center”)Beijing Information Science & Technology UniversityBeijingChina

Personalised recommendations