Advertisement

Photonic Sensors

, Volume 9, Issue 1, pp 53–59 | Cite as

Fiber-Optic Raman Spectrum Sensor for Fast Diagnosis of Esophageal Cancer

  • Jianhua Dai
  • Xiu He
  • Zhuoyue Li
  • Kang Li
  • Tingting Yang
  • Zengling Ran
  • Lijian Yin
  • Yao Chen
  • Xiang Zou
  • Dianchun FangEmail author
  • Guiyong PengEmail author
Open Access
Regular
  • 106 Downloads

Abstract

A fiber-optic Raman spectrum sensor system is used for the fast diagnosis of esophageal cancer during clinical endoscopic examination. The system contains a 785 nm exciting laser, a Raman fiber-optic probe with 7 large core fibers and a focus lens, and a highly sensitive spectrum meter. The Raman spectrum of the tissue could be obtained within 1 second by using such a system. A signal baseline removal and denoising technology is used to improve the signal quality. A novel signal feature extraction method for differentiating the normal and esophageal cancer tissues is proposed, based on the differences in half-height width (HHW) in 1200 cm‒1 to 1400 cm‒1 frequency band and the ratios of the spectral integral energy between 1600 cm‒1 − 1700 cm‒1 and 1500 cm‒1 − 1600 cm‒1 band. It shows a high specificity and effectivity for the diagnosis of esophageal cancer.

Keywords

Fiber-optic Raman spectrum esophageal cancer 

References

  1. [1]
    A. Jemal, R. Siegel, J. Q. Xu, and E. Ward, “Cancer statistics,” CA: A Cancer Journal for Clinicians, 2010, 60(5): 277–300.Google Scholar
  2. [2]
    L. M. Brown, S. S. Devesa, and W. H. Chow, “Incidence of adenocarcinoma of the esophagus among white Americans by sex, stage, and age,” Journal of the National Cancer Institute, 2008, 100(16): 1184–1187.CrossRefGoogle Scholar
  3. [3]
    S. S. Devesa, W. J. Blot, and J. F. Fraumeni, “Changing patterns in the incidence of esophageal and gastric carcinoma in the United States,” Cancer, 1998, 83(10): 2049–2053.CrossRefGoogle Scholar
  4. [4]
    R. Krishnamoorthi, S. Singh, K. Ragunathan, D. A. Katzka, K. K. Wang, and P. G. Iyer, “Risk of recurrence of Barrett’s esophagus after successful endoscopic therapy,” Gastrointestinal Endoscopy, 2016, 83(6): 1090–1106.CrossRefGoogle Scholar
  5. [5]
    T. Oyama, A. Tomori, K. Hotta, S. Morita, K. Kominato, M. Tanaka, et al., “Endoscopic submucosal dissection of early esophageal cancer,” Clinical Gastroenterology and Hepatology, 2005, 3(7): S67–S70.CrossRefGoogle Scholar
  6. [6]
    M. Fujishiro, N. Yahagi, N. Kakushima, S. Kodashima, Y. Muraki, S. Ono, et al., “Endoscopic submucosal dissection of esophageal squamous cell neoplasms,” Clinical Gastroenterology and Hepatology, 2006, 4(6): 688–694.CrossRefGoogle Scholar
  7. [7]
    T. Ohki, M. Yamato, M. Ota, R. Takagi, D. Murakami, M. Kondo, et al., “Prevention of esophageal stricture after endoscopic submucosal dissection using tissue-engineered cell sheets,” Gastroenterology, 2012, 143(3): 582–588.CrossRefGoogle Scholar
  8. [8]
    T. Mizumoto, T. Hiyama, S. Ok, N. Yorita, K. Kuroki, M. Kurihara, et al., “Curative criteria after endoscopic resection for superficial esophageal squamous cell carcinomas,” Digestive Diseases and Sciences, 2018, 63(6): 1605–1612.CrossRefGoogle Scholar
  9. [9]
    C. Fleichmann and H. Messmann, “Endoscopic treatment of early esophageal squamous neoplasia,” Minerva Chirurgica, 2018, 73(4): 378–384.Google Scholar
  10. [10]
    L. Sreedharan, G. C. Mayne, D. I. Watson, T. Bright, R. V. Lord, A. Ansar, et al., “MicroRNA profile in neosquamous esophageal mucosa following ablation of Barrett’s esophagus,” World Journal of Gastroenterology, 2017, 23(30): 5508–5518.CrossRefGoogle Scholar
  11. [11]
    S. N. Choudhury, B. Konwar, S. Kaur, R. Doley, and B. Mondal, “Study on snake venom protein-antibody interaction by surface plasmon resonance spectroscopy,” Photonic Sensors, 2018, 8(3): 193–202.ADSCrossRefGoogle Scholar
  12. [12]
    C. Xiao, Z. B. Chen, M. Z. Qing, D. X. Zhang, and L. Fan, “Composite sinusoidal nanograting with long-range SERS effect for label-free TNT detection,” Photonic Sensors, 2018, 8(3): 1–11.CrossRefGoogle Scholar
  13. [13]
    S. S. Cui, S. Zhang, and S. H. Yue, “Raman spectroscopy and imaging for cancer diagnosis,” Journal of Healthcare Engineering, 2018: 8619342–1–8619342–11.Google Scholar
  14. [14]
    T. D. Wang, G. Triadafilopoulos, J. M. Crawford, L. R. Dixon, T. Bhandari, P. Sahbaie, et al., “Detection of endogenous biomolecules in Barrett’s esophagus by Fourier transform infrared spectroscopy,” Proceedings of the National Academy of Sciences, 2007, 104(40): 15864–15869.ADSCrossRefGoogle Scholar
  15. [15]
    M. G. Shim, W. K. S L. Michel, N. E. Marcon, and B. C. Wilson, “In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy,” Photochemistry and Photobiology, 2000, 72(1): 146–150.Google Scholar
  16. [16]
    Z. W. Huang, S. K. Teh, W. Zheng, J. H. Mo, K. Lin, X. Z. Shao, et al., “Integrated Raman spectroscopy and trimodal wide-field imaging techniques for real-time in vivo tissue Raman measurements at endoscopy,” Optics Letters, 2009, 34(6): 758–760.ADSCrossRefGoogle Scholar
  17. [17]
    G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” British Journal of Cancer, 2006, 94: 1460–1464.CrossRefGoogle Scholar
  18. [18]
    M. S. Bergholt, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Y. So, et al., “Fiber-optic confocal Raman spectroscopy for real-time in vivo diagnosis of dysplasia in Barrett’s esophagus,” Gastroenterology, 2014, 146(1): 27–32.CrossRefGoogle Scholar
  19. [19]
    Y. G. Hu, A. G. Shen, T. Jiang, Y. Ai, and J. M. Hu, “Classification of normal and malignant human gastric mucosa tissue with confocal Raman microspectroscopy and wavelet analysis,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2008, 69(2): 378–382.ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://doi.org/creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Jianhua Dai
    • 1
  • Xiu He
    • 2
  • Zhuoyue Li
    • 2
  • Kang Li
    • 2
  • Tingting Yang
    • 2
  • Zengling Ran
    • 2
  • Lijian Yin
    • 1
  • Yao Chen
    • 1
  • Xiang Zou
    • 3
  • Dianchun Fang
    • 1
    Email author
  • Guiyong Peng
    • 1
    Email author
  1. 1.Institute of Digestive Disease, Southwest HospitalArmy Medical UniversityChongqingChina
  2. 2.Fiber Optics Research Center, Key Laboratory of Optical Fiber Sensing & Communications (Ministry of Education)University of Electronic Science and Technology of ChinaChengduChina
  3. 3.Zolix Instruments Co., Ltd.BeijingChina

Personalised recommendations