Advertisement

Photonic Sensors

, Volume 9, Issue 1, pp 11–18 | Cite as

Excitation Mechanism of Surface Plasmon Polaritons for Surface Plasmon Sensor With 1D Metal Grating Structure for High Refractive Index Medium

  • Atsushi MotogaitoEmail author
  • Yusuke Ito
Open Access
Regular

Abstract

The excitation mechanism of surface plasmon polaritons (SPPs) in a surface plasmon sensor with a one-dimensional (1D) Au diffraction grating on a glass substrate is studied herein. The sensitivity of the sensor for application to a refractometer is also characterized. The SPPs are excited at the following two types of interface: one between the Au grating and the glass substrate and the other between the Au grating and the medium. The simulation data for the transmittance spectra and the transmittance mapping are consistent with the experimental data even when the refractive index of the solution medium is 1.700. Therefore, the excitation mechanism of the SPPs in a surface plasmon sensor is capable of detecting the medium (n = 1.700), in which the sensor is used and clarified.

Keywords

Surface plasmon diffraction grating high refractive index chemical sensor 

Notes

Acknowledgment

This work is supported by Grants in Aid for Scientific Research of Japan Society for the Promotion of Science (JSPS, KAKENHI, Grant Nos. 26390082 and 15H03556).

We would like to thank Prof. Kazumasa Hiramatsu and Prof. Hideto Miyake in Mie University for useful discussions. We would also thank Editage (https://doi.org/www.editage.jp) for English language editing.

References

  1. [1]
    K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, et al., “SERS: a versatile tool in chemical,” Analytical and Bioanalytical Chemistry, 2008, 390(1): 113–124.CrossRefGoogle Scholar
  2. [2]
    H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Materials, 2010, 9: 205–213.ADSCrossRefGoogle Scholar
  3. [3]
    C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sensors and Actuators, 1982–1983, 3: 79–88.CrossRefGoogle Scholar
  4. [4]
    E. Kretschmann, “Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen,” Zeitschrift für Physik A Hadrons and Nuclei, 1971, 241(4): 313–324.ADSCrossRefGoogle Scholar
  5. [5]
    A. Motogaito, S. Nakamura, J. Miyazaki, H. Miyake, and K. Hiramatsu, “Using surface-plasmon polariton at the GaP-Au interface in order to detect chemical species in high-refractive-index media,” Optics Communications, 2015, 341: 64–68.ADSCrossRefGoogle Scholar
  6. [6]
    H. Kano and S. Kawata, “Grating-coupled surface plasmon for measuring the refractive index of a liquid sample,” Japanese Journal of Applied Physics, 1995, 34(1): 331–335.ADSCrossRefGoogle Scholar
  7. [7]
    J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sensors and Actuators B, 1999, 54(1–2): 16–24.CrossRefGoogle Scholar
  8. [8]
    J. Dostálek, J. Homola, and M. Miler, “Rich information format surface plasmon resonance biosensor based on array of diffraction gratings,” Sensors and Actuators B, 2005, 107(1): 154–161.CrossRefGoogle Scholar
  9. [9]
    M. Chamtouri, M. Sarkar, J. Moreau, M. Besbes, H. Ghalila, and M. Canva, “Field enhancement and target localization impact on the biosensitivity of nanostructured plasmonic sensors,” Journal of the Optical Society of America B, 2014, 31(5): 1223–1231.CrossRefGoogle Scholar
  10. [10]
    X. F. Li, W. Peng, Y. L. Zhao, Q. Wang, and J. L. Wei, “A subwavelength metal-grating assisted sensor of Kretschmann style for investigating the sample with high refractive index,” Chinese Physics B, 2016, 25(3): 037303–1–037303–4.ADSCrossRefGoogle Scholar
  11. [11]
    A. Motogaito, S. Mito, H. Miyake, and K. Hiramatsu, “Detecting high-refractive-index media using surface plasmon sensor with one-dimensional metal diffraction grating,” Optics and Photonics Journal, 2016, 6(7): 164–170.ADSCrossRefGoogle Scholar
  12. [12]
    A. Motogaito, Y. Morishita, H. Miyake, and K. Hiramatsu, “Extraordinary optical transmission exhibited by surface plasmon polaritons in a double-layer wire grid polarizer,” Plasmonics, 2015, 10(6): 1657–1662.CrossRefGoogle Scholar
  13. [13]
    A. Motogaito, T. Nakajima, H. Miyake, and K. Hiramatsu, “Excitation mechanism of surface plasmon polaritons in a double-layer wire grid structure,” Applied Physics A, 2017, 123(12): 729–1–729–5.CrossRefGoogle Scholar
  14. [14]
    T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature, 1998, 391: 667–669.ADSCrossRefGoogle Scholar
  15. [15]
    Y. A. Qazwini, A. S. M. Noor, Z. A. Qazwini, M. H. Yaacob, S. W. Harun, and M. A. Mahdi, “Refractive index sensor based on SPR in symmetrically etched plastic optical fibers,” Sensors and Actuators A, 2016, 246: 163–169.CrossRefGoogle Scholar
  16. [16]
    J. Zhao, S. Q. Cao, C. R. Liao, Y. Wang, G. J. Wang, X. Z. Xu, et al., “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sensors and Actuators B, 2016, 230: 206–211.CrossRefGoogle Scholar
  17. [17]
    L. T. Ji, X. Q. Sun, G. B. He, Y. Liu, X. B. Wang, Y. J. Yi, et al., “Surface plasmon resonance refractive index sensor based on ultraviolet bleached polymer waveguide,” Sensors and Actuators B, 2017, 244: 373–379.CrossRefGoogle Scholar
  18. [18]
    H. Apriyanto, G. Ravet, O. D. Bernal, M. Cattoen, H. C. Seat, V. Chavagnac, et al., “Comprehensive modeling of multimode fiber sensors for refractive index measurement and experimental validation,” Scientific Report, 2018, 8: 5912–1–5912–13.ADSCrossRefGoogle Scholar
  19. [19]
    Z. C. Ye, J, Zheng, S, Sun, S. J. Chen, and D. H. Liu, “Compact color filter and polarizer of bilayer metallic nanowire grating based on surface plasmon resonances,” Plasmonics, 2013, 8(2): 555–559.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://doi.org/creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Graduate School of EngineeringMie UniversityMieJapan
  2. 2.Iga SatelliteMie UniversityMieJapan

Personalised recommendations