Photonic Sensors

, Volume 9, Issue 1, pp 1–10 | Cite as

Ultrafast Nonlinear Optical Excitation Behaviors of Mono- and Few-Layer Two Dimensional MoS2

  • Yizhi Wang
  • Zhongyuan Guo
  • Jie You
  • Zhen Zhang
  • Xin Zheng
  • Xiangai ChengEmail author
Open Access


The layered MoS2 has recently attracted significant attention for its excellent nonlinear optical properties. Here, the ultrafast nonlinear optical (NLO) absorption and excited carrier dynamics of layered MoS2 (monolayer, 3–4 layers, and 6–8 layers) are investigated via Z-scan and transient absorption spectra. Our experimental results reveal that NLO absorption coefficients of these MoS2 increase from–27 × 103 cm/GW to–11 × 103 cm/GW with more layers at 400-nm laser excitation, while the values decrease from 2.0 × 103 cm/GW to 0.8 × 103 cm/GW at 800 nm. In addition, at high pump fluence, when the NLO response occurs, the results show that not only the reformation of the excitonic bands, but also the recovery time of NLO response decreases from 150 ps to 100 ps with an increasing number of layers, while the reductive energy of A excitonic band decreases from 191.7 meV to 51.1 meV. The intriguing NLO response of MoS2 provides excellent potentials for the next-generation optoelectronic and photonic devices.


Ultrafast optics two-dimensional materials ultrafast photonic devices 



This work was partially supported by Open Research Fund of Hunan Provincial Key Laboratory of High Energy Technology (Grant No. GNJGJS03) and Opening Foundation of State Key Laboratory of Laser Interaction with Matter (Grant No. SKLLIM1702).The authors also would like to thank OU Yanghao, Zhang Jun, and Chen Runze in NUDT (National University of Defense Technology) for their great contributions to the data-collection work.


  1. [1]
    K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, et al., “Tightly bound trions in monolayer MoS2,” Nature Materials, 2013, 12(3): 207–211.ADSCrossRefGoogle Scholar
  2. [2]
    D. S. Tsai, K. K. Liu, D. H. Lien, M. L. Tsai, C. F. Kang, C. A. Lin, et al., “Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environment,” ACS Nano, 2013, 7(5): 3905–3911.CrossRefGoogle Scholar
  3. [3]
    K. P. Wang, J. Wang, J. T. Fan, M. Lotya, A. O’Neill, D. Fox, et al., “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano, 2013, 7(10): 9260–9267.CrossRefGoogle Scholar
  4. [4]
    X. Zheng, R. Z. Chen, G. Shi, J. W. Zhang, Z. J. Xu, X. A. Cheng, et al., “Characterization of nonlinear properties of black phosphorus nanoplatelets with femtosecond pulsed Z-scan measurements,” Optics Letters, 2015, 40: 3480–3483.ADSCrossRefGoogle Scholar
  5. [5]
    Y. Q. Jiang, L. L. Miao, G. B. Jiang, Y. Chen, X. Qi, X. F. Jiang, et al., “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Scientific Reports, 2015, 5: 16372–1–16372–12.ADSCrossRefGoogle Scholar
  6. [6]
    Z. Y. Huang, W. J. Han, H. L. Tang, L. Ren, D. S. Chander, X. Qi, et al., “Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure,” 2D Materials, 2015, 2(3): 035011–1–035011–6.CrossRefGoogle Scholar
  7. [7]
    S. C. Dhanabalan, J. S. Ponraj, Q. Bao, and H. Zhang, “Present perspectives of broadband photo-detectors based on nanobelts, nanoribbons, nanosheets and the emerging 2D materials,” Nanoscale, 2016, 8, 6410–6434.ADSCrossRefGoogle Scholar
  8. [8]
    M. Liu, X. M. Zheng, Y. L. Qi, H. Liu, A. P. Luo, Z. C. Luo, et al., “Microfiber-based few-layer MoS2 saturable absorber for 2.5 GHz passively harmonic mode-locked fiber laser,” Optics Express, 2014, 22(19): 22841–22846.ADSCrossRefGoogle Scholar
  9. [9]
    J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, et al., “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology, 2016, 27: 462001–1–462001–33.CrossRefGoogle Scholar
  10. [10]
    D. Mao, Y. D. Wang, C. J. Ma, L. Han, B. Q. Jiang, X. T. Gan, et al., “WS2 mode-locked ultrafast fiber laser,” Scientific Reports, 2015, 5(7965): 7965–1–7965–7.CrossRefGoogle Scholar
  11. [11]
    S. F. Zhang, N. N. Dong, N. Mcevoy, M. O’Brien, S. Winters, N. C. Berner, et al., “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano, 2015, 9: 7142–7150.CrossRefGoogle Scholar
  12. [12]
    K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Physical Review Letters, 2010, 105: 136805–1–136805–15.ADSCrossRefGoogle Scholar
  13. [13]
    H. Wang, C. Zhang, and F. Rana, “Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2,” Nano Letters, 2015, 15(1): 339–345.ADSCrossRefGoogle Scholar
  14. [14]
    Z. Nie, R. Long, J. S. Teguh, C. C. Huang, D. W. Hewak, E. K. L. Yeow, et al., “Ultrafast electron and hole relaxation pathways in few-layer MoS2,” Journal of Physical Chemistry C, 2015, 119: 20698–20708.CrossRefGoogle Scholar
  15. [15]
    G. Moody, J. Schaibley, and X. Xu, “Exciton dynamics in monolayer transition metal dichalcogenides,” Journal of the Optical Society of America B, 2016, 33(7): C39–C49.CrossRefGoogle Scholar
  16. [16]
    H. Shi, R. Yan, S. Bertolazzi, J. Brivio, B. Gao, A. Kis, et al., “Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals,” ACS Nano, 2013, 7(2): 1072–1080.CrossRefGoogle Scholar
  17. [17]
    D. Tsokkou, X. Yu, K. Sivula, and N. Banerji, “The role of excitons and free charges in the excited-state dynamics of solution-processed few-layer MoS2 nanoflakes,” Journal of Physical Chemistry C, 2016, 120(40): 23286–23292.CrossRefGoogle Scholar
  18. [18]
    Y. F. Yu, C. Li, Y. Liu, L. Q. Su, Y. Zhang, and L. Y. Cao, “Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films,” Scientific Reports, 2013, 3(5): 01866–1–01866–6.ADSCrossRefGoogle Scholar
  19. [19]
    C. Ataca, H. Şahin, and S. Ciraci, “Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure,” Journal of Physical Chemistry C, 2012, 116: 8983–8999.CrossRefGoogle Scholar
  20. [20]
    H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, et al., “From bulk to monolayer MoS2: evolution of Raman scattering,” Advanced Functional Materials, 2012, 22(7): 1385–1390.CrossRefGoogle Scholar
  21. [21]
    A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, et al., “Emerging photoluminescence in monolayer MoS2,” Nano Letters, 2010, 10(4): 1271–1275.ADSCrossRefGoogle Scholar
  22. [22]
    A. Ramasubramaniam, “Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides,” Physical Review B Condensed Matter, 2012, 86(11): 2757–2764.CrossRefGoogle Scholar
  23. [23]
    T. Jiang, R. Z. Chen, X. Zheng, Z. J. Xu, and Y. H. Tang, “Photo-induced excitonic structure renormalization and broadband absorption in monolayer tungsten disulphide,” Optics Express, 2018, 26(2): 859–869.ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Yizhi Wang
    • 1
  • Zhongyuan Guo
    • 2
  • Jie You
    • 2
    • 3
  • Zhen Zhang
    • 4
  • Xin Zheng
    • 2
    • 3
  • Xiangai Cheng
    • 1
    • 2
    Email author
  1. 1.College of Advanced Interdisciplinary StudiesNational University of Defense TechnologyChangshaChina
  2. 2.State Key Laboratory of High Performance ComputingNational University of Defense TechnologyChangshaChina
  3. 3.National Innovation Institute of Defense TechnologyAcademy of Military Sciences PLA ChinaBeijingChina
  4. 4.State Key Laboratory of Laser Interaction with MatterNorthwest Institute of Nuclear TechnologyXi’anChina

Personalised recommendations