Advertisement

Photonic Sensors

, Volume 8, Issue 3, pp 263–269 | Cite as

Benzene Shape Photonic Crystal Fiber Based Plasma Sensor: Design and Analysis

  • Md. Toriqul Islam
  • Md. Golam Moctader
  • Kawsar Ahmed
  • Sawrab Chowdhury
Open Access
Regular
  • 132 Downloads

Abstract

A novel benzene core photonic crystal fiber (BC-PCF) is proposed for plasma sensing applications. The proposed BC-PCF parameters have been tuned to gain high sensitivity, high numerical aperture (NA), and low confinement loss, and modality over the extensive variety of 0.7 µm to 1.9 µm wavelength. The explored results for the ideal structure have exhibited the high sensitivity up to 77.84% and negligible confinement loss of 7.9 × 10-3 dB/m at 1.3 µm wavelength. The V-barometer remains under 2.405 over the whole working wavelength. So the proposed BC-PCF is a single mode fiber, which advances the long partition correspondence applications. Furthermore, high numerical aperture (NA) makes the fiber potential candidate in medical imaging applications. The plan of the sensor is to find out the creative potential outcomes in sensing applications.

Keywords

Optical sensor relative sensitivity numerical aperture confinement loss benzene core photonic crystal fiber (BC-PCF) 

References

  1. [1]
    X. Sang, P. L. Chu, and C. Yu, “Applications of nonlinear effects in highly nonlinear photonic crystal fiber to optical communications,” Optical and Quantum Electronics, 2005, 37(10): 965–994.CrossRefGoogle Scholar
  2. [2]
    K. P. Hansen, “Introduction to nonlinear photonic crystal fibers,” Journal of Optical and Fiber Communications Reports, 2005, 2(3): 226–254.MathSciNetCrossRefGoogle Scholar
  3. [3]
    A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, et al., “Highly birefringent photonic crystal fibers,” Optics Letters, 2000, 25(18): 1325–1327.ADSCrossRefGoogle Scholar
  4. [4]
    T. P. Hansen, J. Broeng, S. E. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, et al., “Highly birefringentindex-guiding photonic crystal fibers,” IEEE Photonics Technology Letters, 2001, 13(6): 588–590.ADSCrossRefGoogle Scholar
  5. [5]
    G. W. An, S. G. Li, X. Yan, X. N. Zhang, Z. Y. Yuan, and Y. N. Zhang, “High-sensitivity and tunable refractive index sensor based on dual-core photonic crystal fiber,” Journal of the Optical Society of America B, 2016, 33(7): 1330–1334.CrossRefGoogle Scholar
  6. [6]
    W. Qian, C. L. Zhao, S. He, X. Dong, S. Zhang, Z. Zhang, et al., “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Optics Letters, 2011, 36(9): 1548–1550.ADSCrossRefGoogle Scholar
  7. [7]
    S. Olyaee and F. Taghipour, “Ultra-flattened dispersion hexagonal photonic crystal fiber with low confinement loss and large effective area,” IET Optoelectronics, 2012, 6(2): 82–87.CrossRefGoogle Scholar
  8. [8]
    A. Yin and L. Xiong, “Highly nonlinear with low confinement losses square photonic crystal fiber based on a four-hole unit,” Infrared Physics & Technology, 2014, 66(9): 29–33.ADSGoogle Scholar
  9. [9]
    K. Kishor, R. K. Sinha, and A. D. Varshney, “Experimental verification of improved effective index method for endlessly single mode photonic crystal fiber,” Optics and Lasers in Engineering, 2012, 50(2): 182–186.ADSCrossRefGoogle Scholar
  10. [10]
    H. Ademgil and S. Haxha, “Endlessly single mode photonic crystal fiber with improved effective mode area,” Optics Communications, 2012, 285(6): 1514–1518.ADSCrossRefGoogle Scholar
  11. [11]
    T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Optics Letters, 1997, 22(13): 961–963.ADSCrossRefGoogle Scholar
  12. [12]
    Y. H. Chang, Y. Y. Jhu, and C. J. Wu, “Temperature dependence of defect mode in a defective photonic crystal,” Optics Communications, 2012, 285(6): 1501–1504.ADSCrossRefGoogle Scholar
  13. [13]
    Y. Liu and H. W. M. Salemink, “All-optical on-chip sensor for high refractive index sensing in photonic crystals,” Europhysics Letters, 2014, 107(3): 1160–1170.CrossRefGoogle Scholar
  14. [14]
    S. Z. Zheng, Y. N. Zhu, and S. Krishnaswamy, “Nanofilm-coated photonic crystal fiber long-period gratings with modal transition for high chemical sensitivity and selectivity,” SPIE, 2012, 8346(14): 1844–1864.ADSGoogle Scholar
  15. [15]
    C. K. Lee and J. Thillaigovindan, “Optical nanomechanical sensor using a silicon photonic crystal cantilever embedded with a nanocavity resonator,” Applied Optics, 2009, 48(10): 1797–1803.ADSCrossRefGoogle Scholar
  16. [16]
    S. Olyaee and A. A. Dehghani, “Ultrasensitive pressure sensor based on point defect resonant cavity in photonic crystal,” Sensor Letters, 2013, 11(10): 1854–1859.CrossRefGoogle Scholar
  17. [17]
    Y. N. Zhang, Y. Zhao, and Q. Wang, “Multi-component gas sensing based on slotted photonic crystal waveguide with liquid infiltration,” Sensors and Actuators B: Chemical, 2013, 184(8): 179–188.CrossRefGoogle Scholar
  18. [18]
    M. Morshed, M. F. H. Arif, S. Asaduzzaman, and K. Ahmed, “Design and characterization of photonic crystal fiber for sensing applications,” European Scientific Journal, 2015, 11(12): 228–235.Google Scholar
  19. [19]
    T. W. Lu and P. T. Lee, “Ultra-high sensitivity optical stress sensor based on double-layered photonic crystal microcavity,” Optics Express, 2009, 17(3): 1518–1526.ADSCrossRefGoogle Scholar
  20. [20]
    P. Hu, X. Dong, W. C. Wong, L. H. Chen, K. Ni, and C. C. Chan, “Photonic crystal fiber interferometric pH sensor based on polyvinyl alcohol/polyacrylic acid hydrogel coating,” Applied Optics, 2015, 54(10): 2647–2652.ADSCrossRefGoogle Scholar
  21. [21]
    W. C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Multiplexed detection of xylene and trichloroethylene in water by photonic crystal absorption spectroscopy,” Optics Letters, 2013, 38(19): 3799–3802.ADSCrossRefGoogle Scholar
  22. [22]
    E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for biosensing applications,” IEEE Journal of Quantum Electronics, 2012, 48(11): 1403–1410.ADSCrossRefGoogle Scholar
  23. [23]
    M. B. Pushkarsky, M. E. Webber, O. Baghdassarian, L. R. Narasimhan, and C. K. N. Patel, “Laser-based photoacoustic ammonia sensors for industrial applications,” Applied Physics B, 2002, 75(2–3): 391–396.CrossRefGoogle Scholar
  24. [24]
    K. Ahmed and M. Morshed, “Design and numerical analysis of microstructured-core octagonal photonic crystal fiber for sensing applications,” Sensing and Biosensing Research, 2016, 7: 1–6.CrossRefGoogle Scholar
  25. [25]
    K. Ahmed, M. Morshed, S. Asaduzzaman, and M. F. H. Arif, “Optimization and enhancement of liquid analyte sensing performance based on square-cored octagonal photonic crystal fiber,” Optik-International Journal for Light and Electron Optics, 2017, 131: 687–696.CrossRefGoogle Scholar
  26. [26]
    S. Asaduzzaman, K. Ahmed, T. Bhuiyan, and T. Farah, “Hybrid photonic crystal fiber in chemical sensing,” Springerplus, 2016, 5(1): 1–11.CrossRefGoogle Scholar
  27. [27]
    B. K. Paul, K. Ahmed, S. Asaduzzaman, and M. S. Islam, “Folded cladding porous shaped photonic crystal fiber with high sensitivity in optical sensing applications: design and analysis,” Sensing and Biosensing Research, 2017, 12: 36–42.CrossRefGoogle Scholar
  28. [28]
    B. K. Paul, M. S. Islam, K. Ahmed, and S. Asaduzzaman, “Alcohol sensing over O + E + S + C + L + U transmission band based on porous cored octagonal photonic crystal fiber,” Photonics Sensors, 2017, 7(2): 123–130.ADSCrossRefGoogle Scholar
  29. [29]
    K. Ahmed, I. Islam, B. K. Paul, S. Islam, S. Sen, S. Chowdhury, et al., “Effect of photonic crystal fiber background materials in sensing and communication applications,” Materials Discovery, 2017, 7: 8–14.CrossRefGoogle Scholar
  30. [30]
    M. S. Islam, B. K. Paul, K. Ahmed, S. Asaduzzaman, M. I. Islam, S. Chowdhury, et al., “Liquid-infiltrated photonic crystal fiber for sensing purpose: design and analysis,” Alexandria Engineering Journal, 2017: 1–8.Google Scholar
  31. [31]
    K. Ahmed and M. Morshed, “Design and numerical analysis of microstructured-core octagonal photonic crystal fiber for sensing applications,” Sensing and Biosensing Research, 2016, 7: 1–6.CrossRefGoogle Scholar
  32. [32]
    B. K. Paul, M. S. Islam, S. Chowdhury, S. Asaduzzaman, and K. Ahmed, “Porous core photonic crystal fiber based chemical sensor,” in Proceeding of IEEE 9th International Conference on Electrical and Computer Engineering (ICECE), Dhaka, Bangladesh, 2016, pp. 251–254.Google Scholar
  33. [33]
    S. Sen, S. Chowdhury, K. Ahmed, and S. Asaduzzaman, “Design of a porous cored hexagonal photonic crystal fiber based optical sensor with high relative sensitivity for lower operating wavelength,” Photonic Sensors, 2017, 7(1): 55–65.ADSCrossRefGoogle Scholar
  34. [34]
    S. Chowdhury, K. Ahmed, S. Sen, and S. Asaduzzaman, “Design of highly sensible porous shaped photonic crystal fiber with strong confinement field for optical sensing,” Optik–International Journal for Light and Electron Optics, 2017, 142: 541–549.CrossRefGoogle Scholar
  35. [35]
    A. Islam, M. Shadidul, B. K. Paul, K. Ahmed, S. Asaduzzaman, M. I. Islam, et al., “Liquid-infiltrated photonic crystal fiber for sensing purpose: design and analysis,” Alexandria Engineering Journal, 2017: 1–8.Google Scholar
  36. [36]
    M. H. Kabir, M. B. A. Miah, S. Asaduzzaman, and K. Ahmed, “Slotted corecircular PCF in chemical sensing applications,” Ukrainian Journal of Physics, 2017, 62(7): 589–593.CrossRefGoogle Scholar
  37. [37]
    S. Asaduzzaman, K. Ahmed, M. F. H. Arif, and M. Morshed, “Application of microarray-core based modified photonic crystal fiber in chemical sensing,” in Proceeding of IEEE Conference in Electrical and Electronics Engineering, Rajshahi, Bangladesh, 2015, pp. 41–44.Google Scholar
  38. [38]
    S. Asaduzzaman, K. Ahmed, M. F. H. Arif, and M. Morshed, “Proposal of a simple structure Photonic crystal fiber for lower indexed Chemical sensing,” in Proceeding of Computer and Information Technology, Dhaka, Bangladesh, 2015: 127–131.Google Scholar
  39. [39]
    M. S. Islam, J. Sultana, K. Ahmed, M. R. Islam, A. Dinovitser, B. W. Ng, et al., “A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime,” IEEE Sensors Journal, 2018, 18(2): 575–582.ADSCrossRefGoogle Scholar
  40. [40]
    M. F. H. Arif, M. J. H. Biddut, K. Ahmed, and S. Asaduzzaman, “Simulation based analysis of formalin detection through photonic crystal fiber,” in Proceeding of Electronics and Vision (ICIEV), Dhaka, Bangladesh, 2016, pp. 776–779.Google Scholar
  41. [41]
    M. F. H. Arif, S. Asaduzzaman, K. Ahmed, and M. Morshed, “High sensitive PCF based chemical sensor for ethanol detection,” in Proceeding of Electronics and Vision (ICIEV), Dhaka, Bangladesh, 2016, pp. 6–9.Google Scholar
  42. [42]
    I. Islam, K. Ahmed, S. Asaduzzaman, B. K. Paul, T. Bhuiyan, S. Sen, et al., “Design of single mode spiral photonic crystal fiber for gas sensing applications,” Sensing and Bio-Sensing Research, 2017, 13: 55–62.CrossRefGoogle Scholar
  43. [43]
    S. Chowdhury, S. Sen, K. Ahmed, B. K. Paul, M. B. A. Miah, S. Asaduzzaman, et al., “Porous shaped photonic crystal fiber with strong confinement field in sensing applications: design and analysis,” Sensing and Bio-Sensing Research, 2017, 13: 63–69.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Md. Toriqul Islam
    • 1
  • Md. Golam Moctader
    • 1
  • Kawsar Ahmed
    • 2
    • 3
  • Sawrab Chowdhury
    • 3
  1. 1.Department of PhysicsMawlana Bhashani Science and Technology UniversitySantosh, TangailBangladesh
  2. 2.Group of Bio-photomatiχTangailBangladesh
  3. 3.Department of Information and Communication TechnologyMawlana Bhashani Science and Technology UniversitySantosh, TangailBangladesh

Personalised recommendations