Photonic Sensors

, Volume 5, Issue 3, pp 251–256 | Cite as

Short ring cavity swept source based on a highly reflective chirped FBG

  • Radu-Florin Stancu
  • Adrian Podoleanu
Open Access


An optical akinetic swept source (AKSS) at 1060 nm, comprising a 5 m length fiber ring cavity, a semiconductor optical amplifier (SOA) as gain medium, and a 98% reflective chirped fiber Bragg grating as a dispersive element, is described. Active mode-locking was achieved by directly modulating the current of the SOA with sinusoidal signal of frequency equal to 10 times and 20 times the cavity resonance frequency. In the static regime, linewidths as narrow as 60 pm and a tuning bandwidth of 30 nm were achieved, while a 2 mW output power, without any optical booster, was measured dynamically at a sweep speed of 100 kHz. The axial range of the AKSS was evaluated by scanning through the channeled spectrum of a Mach-Zehnder interferometer.


Semiconductor optical amplifier laser mode locking ring laser dispersive element 


  1. [1]
    S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Optics Letters, 1997, 22(5): 340–342.ADSCrossRefGoogle Scholar
  2. [2]
    I. Trifanov, A. Bradu, L. Neagu, P. Guerreiro, A. B. L. Ribeiro, and A. G. Podoleanu, “Experimental method to find the optimum excitation waveform to quench mechanical resonances of Fabry-Pérot tunable filters used in swept sources,” IEEE Photonics Technology Letters, 2011, 23(12): 825–827.ADSCrossRefGoogle Scholar
  3. [3]
    S. W. Lee, H. W. Song, M. Y. Jung, and S. H. Kim, “Wide tuning range wavelength-swept laser with a single SOA at 1020 nm for ultrahigh resolution Fourier-domain optical coherence tomography,” Optics Express, 2011, 19(22): 21227–21237.ADSCrossRefGoogle Scholar
  4. [4]
    J. Masson, R. St-Gelais, A. Poulin, and Y. A. Peter, “Tunable fiber laser using a MEMS-based in plane Fabry-Pérot filter,” IEEE Journal of Quantum Electronics, 2010, 46(9): 1313–1319.ADSCrossRefzbMATHGoogle Scholar
  5. [5]
    R. H. Huber, M. Wojtkovski, and J. G. Fujimoto, “Fourier domain mode locking (FDML),” Optics Express, 2006, 14(8): 3225–3237.ADSCrossRefGoogle Scholar
  6. [6]
    T. Huo, J. Zhang, J. Zheng, T. Chen, C. Wang, N. Zhang, et al., “Linear-in-wavenumber swept laser with an acousto-optic deflector for optical coherence tomography,” Optics Letters, 2014, 39(2): 247–250.ADSCrossRefGoogle Scholar
  7. [7]
    T. H. Tsai, O. O. Ahsen, H. C Lee, K. Liang, M. G. Giacomelli, B. Potsaid, et al., “Endoscopic microscopy IX; and optical techniques in pulmonary medicine,” in Proc. SPIE, vol. 89270, pp. 70–78, 2014.Google Scholar
  8. [8]
    S. Yamashita and M. Asano, “Wide and fast wavelength-tunable mode-locked fiber laser based on dispersion tuning,” Optics Express, 2006, 14(20): 9399–9306.ADSCrossRefzbMATHGoogle Scholar
  9. [9]
    Y. Takubo and S. Yamashita, “In-vivo OCT imaging using wavelength swept fiber laser based on dispersion tuning,” Photonics Technology Letters, 2012, 24(12): 979–981.ADSCrossRefGoogle Scholar
  10. [10]
    R. F. Stancu, D. A. Jackson, and A. G. Podoleanu, “Versatile swept source with adjustable coherence length,” IEEE Photonics Technology Letters, 2014, 26(16): 1629–1632.ADSCrossRefzbMATHGoogle Scholar
  11. [11]
    Y. Takubo and S. Yamashita, “High-speed dispersion-tuned wavelength-swept fiber laser using a reflective SOA and a chirped FBG,” Optics Express, 2013, 21(4): 5130–5139.ADSCrossRefGoogle Scholar
  12. [12]
    H. D. Lee, M. Y. Jeong, C. S. Kim, J. G. Shin, B. H. Lee, and T. J. Eom, “Linearly wavenumber-swept active mode locking short-cavity fiber laser for in-vivo OCT imaging,” IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20 (5): 1101008.Google Scholar
  13. [13]
    A. G. Podoleanu, “Optical coherence tomography,” Journal of Microscopy, 2012, 247(3): 209–219.CrossRefzbMATHGoogle Scholar
  14. [14]
    A. Takada, M. Fujino, and S. Nagano, “Dispersion dependence of linewidth in actively mode-locked ring lasers,” Optics Express, 2012, 20(4): 4753–4762.ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Applied Optics Group, School of Physical SciencesUniversity of KentCanterbury, KentUK

Personalised recommendations