Photonic Sensors

, Volume 2, Issue 4, pp 289–314 | Cite as

Lab-on-fiber technology: a new avenue for optical nanosensors

Open Access
Review

Abstract

The “lab-on-fiber” concept envisions novel and highly functionalized technological platforms completely integrated in a single optical fiber that would allow the development of advanced devices, components and sub-systems to be incorporated in modern optical systems for communication and sensing applications. The realization of integrated optical fiber devices requires that several structures and materials at nano- and micro-scale are constructed, embedded and connected all together to provide the necessary physical connections and light-matter interactions. This paper reviews the strategies, the main achievements and related devices in the lab-on-fiber roadmap discussing perspectives and challenges that lie ahead.

Keywords

Lab-on-fiber all-in-fiber devices optical fiber sensors and devices microstructured fiber Bragg gratings microstructured optical fibers multimaterial and multifunctional fibers 

References

  1. [1]
    P. Russell, “Photonic crystal fibers,” Science, vol. 299, no. 5605, pp. 358–362, 2003.Google Scholar
  2. [2]
    J. C. Knight, “Photonic crystal fibres,” Nature, vol. 424, no. 6950, pp. 847–851, 2003.Google Scholar
  3. [3]
    O. Ziemann, J. Krauser, P. E. Zamzow, and W. Daum, POF handbook: optical short range transmission systems. Berlin, Germany: Springer-Verlag, 2008.Google Scholar
  4. [4]
    M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, et al., “Microstructured polymer optical fibre,” Optics Express, vol. 9, no. 7, pp. 319–327, 2001.Google Scholar
  5. [5]
    A. Cusano, M. Consales, M. Pisco, A. Crescitelli, A. Ricciardi, E. Esposito, et al., “Lab on fiber technology and related devices, part I: a new technological scenario; lab on fiber technology and related devices, part II: the impact of the nanotechnologies,” in Proc. SPIE, vol. 8001, pp. 800122, 2011.Google Scholar
  6. [6]
    A. Cusano, D. Paladino, and A. Iadicicco, “Microstructured fiber Bragg gratings,” Journal of Lightwave Technology, vol. 27, no. 11, pp. 1663–1697, 2009.Google Scholar
  7. [7]
    A. Cusano, M. Giordano, A. Cutolo, M. Pisco, and M. Consales, “Integrated development of chemoptical fiber nanosensors,” Current Analytical Chemistry, vol. 4, no. 4, pp. 296–315, 2008.Google Scholar
  8. [8]
    J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser and Photonics Reviews, vol. 2, no. 4, pp. 275–289, 2008.Google Scholar
  9. [9]
    B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Optics Express, vol. 9, no. 13, pp. 698–713, 2001.Google Scholar
  10. [10]
    F. J. Arregui, Sensors based on nanostructured materials. New York: Springer, 2009.Google Scholar
  11. [11]
    B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Optical Fiber Technology, vol. 15, no. 3, pp. 209–221, 2009.Google Scholar
  12. [12]
    A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, et al., “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nature Materials, vol. 6, no. 5, pp. 336–347, 2007.Google Scholar
  13. [13]
    E. J. Smythe, M. D. Dickey, G. M. Whitesides, and F. A. Capasso, “A technique to transfer metallic nanoscale patterns to small and nonplanar surfaces,” ACS Nano, vol. 3, no. 1, pp. 59–65, 2009.Google Scholar
  14. [14]
    D. J. Lipomi, R. V. Martinez, M. A. Kats, S. H. Kang, P. Kim, J. Aizenberg, et al., “Patterning the tips of optical fibers with metallic nanostructures using nanoskiving,” Nano Letters, vol. 11, no. 2, pp. 632–636, 2011.Google Scholar
  15. [15]
    D. Iannuzzi, S. Deladi, V. J. Gadgil, R. G. P. Sanders, H. Schreuders, and M. C. Elwenspoek, “Monolithic fiber-top sensor for critical environments and standard applications,” Applied Physics Letters, vol. 88, no. 5, pp. 053501, 2006.Google Scholar
  16. [16]
    M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: towards multi-funcional optical nanoprobes,” ACS Nano, vol. 6, no. 4, pp. 3163–3170, 2012.Google Scholar
  17. [17]
    G.. Brambilla, “Optical fibre nanowires and microwires: a review,” Journal of Optics, vol. 12, no. 4, pp. 043001, 2010.Google Scholar
  18. [18]
    J. Canning and M. G. Sceats, “π-phase-shifted periodic distributed structures in germanosilicate fibre by UV post-processing,” Electronics Letters, vol. 30, no. 16, pp. 1344–1345, 1994.Google Scholar
  19. [19]
    M. Janos and J. Canning, “Permanent and transient resonances thermally induced in optical fibre Bragg gratings,” Electronics Letters, vol. 31, no. 12, pp. 1007–1009, 1995.Google Scholar
  20. [20]
    D. Uttamchandani and A. Othonos, “Phase shifted Bragg gratings formed in optical fibres by post-fabrication thermal processing,” Optics Communications, vol. 127, no. 4–6, pp. 200–204, 1996.Google Scholar
  21. [21]
    A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Microstructured fiber Bragg gratings: analysis and fabrication,” Electronics Letters, vol. 41, no. 8, pp. 466–468, 2005.Google Scholar
  22. [22]
    R. Zengerle and O. Leminger, “Phase-shifted Bragg-grating filters with improved transmission characteristics,” Journal of Lightwave Technology, vol. 13, no. 12, pp. 2354–2358, 1995.Google Scholar
  23. [23]
    L. Wei and J. W. Y. Lit, “Phase-shifted Bragg grating filters with symmetrical structures,” Journal of Lightwave Technology, vol. 15, no. 8, pp. 1405–1410, 1997.Google Scholar
  24. [24]
    A. Cusano, A. Iadicicco, S. Campopiano, M. Giordano, and A. Cutolo, “Thinned and micro-structured fiber Bragg gratings: towards new all fiber high sensitivity chemical sensors,” Journal of Optics A: Pure and Applied Optics, vol. 7, no. 12, pp. 734–741, 2005.Google Scholar
  25. [25]
    A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber and Integrated Optics, vol. 7, no. 1, pp. 51–62, 1998.Google Scholar
  26. [26]
    A. Iadicicco, S. Campopiano, D. Paladino, A. Cutolo, and A. Cusano, “Micro-structured fiber Bragg gratings: optimization of the fabrication process,” Optics Express, vol. 15, no. 23, pp. 15011–15021, 2007.Google Scholar
  27. [27]
    A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, and A. Cutolo, “Photonic band-gap engineering in UV fiber gratings by the arc discharge technique,” Optics Express, vol. 16, no. 20, pp. 15332–15342, 2008.Google Scholar
  28. [28]
    D. Paladino, A. Iadicicco, S. Campopiano, and A. Cusano, “Not-lithographic fabrication of micro-structured fiber Bragg gratings evanescent wave sensors,” Optics Express, vol. 17, no. 2, pp. 1042–1054, 2009.Google Scholar
  29. [29]
    W. C. Du, X. M. Tao, and H. Y. Tam, “Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature,” IEEE Photonics Technology Letters, vol. 11, no. 1, pp. 105–107, 1999.Google Scholar
  30. [30]
    K. Zhou, Y. Lai, X. Chen, K. Sugden, L. Zhang, and I. Bennion, “A refractometer based on a micro-slot in a fiber Bragg grating formed by chemically assisted femtosecond laser processing,” Optics Express, vol. 15, no. 24, pp. 15848–15853, 2007.Google Scholar
  31. [31]
    M. Pisco, A. Iadicicco, S. Campopiano, A. Cutolo, and A. Cusano, “Structured chirped fiber Bragg gratings,” Journal of Lightwave Technology, vol. 26, no. 12, pp. 1613–1625, 2008.Google Scholar
  32. [32]
    S. W. James and R. P. Tatam, “Optical fibre long period grating sensors: characteristics and application,” Measurement Science and Technology, vol. 14, no. 5, pp. R49–R61, 2003.Google Scholar
  33. [33]
    N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, “Optical fibre long period gratings with Langmuir-Blodgett thin-film overlays,” Optics Letters, vol. 27, no. 9, pp. 686–688, 2002.Google Scholar
  34. [34]
    I. Del Villar, M. Achaerandio, I. R. Matias, and F. J. Arregui, “Deposition of overlays by electrostatic self assembly in long-period fiber gratings,” Optics Letters, vol. 30, no. 7, pp. 720–722, 2005.Google Scholar
  35. [35]
    I. Del Villar, I. R. Matias, F. J. Arregui, and P. Lalanne, “Optimization of sensitivity in long period fiber gratings with overlay deposition,” Optics Express, vol. 13, no. 1, pp. 56–69, 2005.Google Scholar
  36. [36]
    P. Pilla, A. Iadicicco, L. Contessa, S. Campopiano, A. Cutolo, M. Giordano, et al., “Optical chemosensor based on long period gratings coated with δ form syndiotactic polystyrene,” IEEE Photonics Technology Letters, vol. 17, no. 8, pp. 1713–1715, 2005.Google Scholar
  37. [37]
    A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, et al., “Cladding modes re-organization in high refractive index coated long period gratings: effects on the refractive index sensitivity,” Optics Letters, vol. 30, no. 9, pp. 2536–25387, 2005.Google Scholar
  38. [38]
    E. Simões, I. Abe, J. Oliveira, O. Frazão, P. Caldas, and J. L. Pinto, “Characterization of optical fiber long period grating refractometer with nanocoating,” Sensors and Actuators B: Chemical, vol. 153, no. 2, pp. 335–339, 2011.Google Scholar
  39. [39]
    A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, et al., “Mode transition in high refractive index coated long period gratings,” Optics Express, vol. 14, no. 1, pp, 19–34, 2006.Google Scholar
  40. [40]
    P. Pilla, A. Cusano, A. Cutolo, M. Giordano, G. Mensitieri, P. Rizzo, et al., “Molecular sensing by nanoporous crystalline polymers,” Sensors, vol. 9, no. 12, pp. 9816–9857, 2009.Google Scholar
  41. [41]
    N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, “Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays,” Optics Letters, vol. 27, no. 9, pp. 686–688, 2002.Google Scholar
  42. [42]
    A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, et al., “High sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water,” Applied Physics Letters, vol. 87, no. 23, pp. 234105-1–234105-3, 2005.Google Scholar
  43. [43]
    Z. Gu and Y. Xu, “Design optimization of a long-period fiber grating with sol-gel coating for a gas sensor,” Measurement Science and Technology, vol. 18, no. 11, pp. 3530–3536, 2007.MathSciNetGoogle Scholar
  44. [44]
    D. Viegas, J. Goicoechea, J. L. Santos, F. M. Araújo, L. A. Ferreira, F. J. Arregui, et al., “Sensitivity improvement of a humidity sensor based on silica nanospheres on a long-period fiber grating,” Sensors, vol. 9, no. 1, pp. 519–527, 2009.Google Scholar
  45. [45]
    J. M. Corres, I. R. Matias, I Del Villar, and F. J. Arregui, “Design of pH sensors in long-period fiber gratings using polymeric nanocoatings,” IEEE Sensors Journal, vol. 7, no. 3, pp. 455–463, 2007.Google Scholar
  46. [46]
    M. Konstantaki, S. Pissadakis, S. Pispas, N. Madamopoulos, and N. A. Vainos, “Optical fiber long-period grating humidity sensor with poly(ethylene oxide)/cobalt chloride coating,” Applied Optics, vol. 45, no. 19, pp. 4567–4571, 2006.Google Scholar
  47. [47]
    D. Viegas, J. Goicoechea, J. M. Corres, J. L. Santos, L. A. Ferreira, F. M. Araújo, et al., “A fiber optic humidity sensor based on a long-period fiber grating coated with a thin film of SiO2 nanospheres,” Measurement Science and Technology, vol. 20, no. 3, pp. 034002, 2009.Google Scholar
  48. [48]
    A. Cusano, A. Iadicicco, P. Pilla, A. Cutolo, M. Giordano, and S. Campopiano, “Sensitivity characteristics in nanosized coated long period gratings,” Applied Physics Letters, vol. 89, no. 20, pp. 201116-1–201116-3, 2006.Google Scholar
  49. [49]
    S. James and R. Tatam, “Fiber optic sensors with nano-structured coatings,” Journal of Optics A: Pure and Applied Optics, vol. 8, no. 7, pp. S430–S444, 2006.Google Scholar
  50. [50]
    P. Pilla, P. Foglia Manzillo, V. Malachovska, A. Buosciolo, S. Campopiano, A. Cutolo, et al., “Long period grating working in transition mode as promising technological platform for label-free biosensing,” Optics Express, vol. 17, no. 22, pp. 20039–20050, 2009.Google Scholar
  51. [51]
    P. Pilla, V. Malachovska, A. Borriello, A. Buosciolo, M. Giordano, L. Ambrosio, et al., “Transition mode long period grating biosensor with functional multilayer coatings,” Optics Express, vol. 19, no. 2, pp, 512–526, 2011.Google Scholar
  52. [52]
    P. Foglia Manzillo, P. Pilla, A. Buosciolo, S. Campopiano, A. Cutolo, A. Borriello, et al., “Self assembling and coordination of water nano-layers on polymer coated long period gratings: toward new perspectives for cation detection,” Soft Materials, vol. 9, no. 2–3, pp. 238–263, 2011.Google Scholar
  53. [53]
    G. Meltz, S. J. Hewlett, and J. D. Love, “Fiber grating evanescent wave sensors,” in Proc. SPIE, vol. 2836, pp. 342–350, 1996.Google Scholar
  54. [54]
    D. J. Markos, B. L. Ipson, K. H. Smith, S. M. Schultz, and R. H. Selfridge, “Controlled core removal from a D-shaped optical fiber,” Applied Optics, vol. 42, no. 36, pp. 7121–7125, 2003.Google Scholar
  55. [55]
    T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber bragg gratings,” IEEE Photonics Technology Letters, vol. 17, no. 9, pp. 1926–1928, 2005.Google Scholar
  56. [56]
    R. H. Selfridge, S. M. Schultz, T. L. Lowder, V. P. Wnuk, A. Mendez, S. Ferguson, et al., “Packaging of surface relief fiber bragg gratings for use as strain sensors at high temperature,” in Proc. SPIE, vol. 6167, pp. 616702-1–616702-7, 2006.Google Scholar
  57. [57]
    T. L. Lowder, J. D. Gordon, S. M. Schultz, and R. H. Selfridge, “Volatile organic compound sensing using a surface relief d-shaped fiber Bragg grating and a polydimethylsiloxane layer,” Optics Letters, vol. 32, no. 17, pp. 2523–2525, 2007.Google Scholar
  58. [58]
    H. S. Jang, K. N. Park, J. P. Kim, O. J. Kwon, Y. G. Han, and K. S. Lee, “Sensitive DNA biosensor based on a long-period grating formed on the side-polished fiber surface,” Optics Express, vol. 17, no. 5, pp. 3855–3860, 2009.Google Scholar
  59. [59]
    G. Quero, A. Crescitelli, D. Paladino, M. Consales, A. Buosciolo, M. Giordano, et al., “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sensors and Actuators B: Chemical, vol. 152, no. 2, pp. 196–205, 2011.Google Scholar
  60. [60]
    X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” Journal of Lightwave Technology, vol. 20, no. 2, pp. 255–266, 2002.Google Scholar
  61. [61]
    L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Optics Letters, vol. 33, no. 5, pp. 563–565, 2008.Google Scholar
  62. [62]
    J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, et al., “Nanotube molecular wires as chemical sensors,” Science, vol. 287, no. 5453, pp. 622–625, 2000.Google Scholar
  63. [63]
    M. Penza, G. Cassano, P. Aversa, F. Antolini, A. Cusano, A. Cutolo, et al., “Alcohol detection using carbon nanotubes acoustic and optical sensors,” Applied Physics Letters, vol. 85, no. 12, pp. 2378–2381, 2004.Google Scholar
  64. [64]
    M. Penza, G. Cassano, P. Aversa, A. Cusano, A. Cutolo, M. Giordano, et al., “Carbon nanotube acoustic and optical sensors for volatile organic compound detection,” Nanotechnology, vol. 16, no. 11, pp. 2536–2547, 2005.Google Scholar
  65. [65]
    M. Consales, A. Cutolo, M. Penza, P. Aversa, G. Cassano, M. Giordano, et al., “Carbon nanotubes coated acoustic and optical VOCs sensors: towards the tailoring of the sensing performances,” IEEE Transactions on Nanotechnology, vol. 6, no. 6, pp. 601–612, 2007.Google Scholar
  66. [66]
    M. Consales, S. Campopiano, A. Cutolo, M. Penza, P. Aversa, G. Cassano, et al., “Carbon nanotubes thin films fiber optic and acoustic VOCs sensors: performances analysis,” Sensors and Actuators B: Chemical, vol. 118, no. 1–2, pp. 232–242, 2006.Google Scholar
  67. [67]
    M. Consales, A. Crescitelli, M. Penza, P. Aversa, P. Delli Veneri, M. Giordano, et al., “SWCNT nano-composite optical sensors for VOC and gas trace detection,” Sensors and Actuators B: Chemical, vol. 138, no. 1, pp. 351–361, 2009.Google Scholar
  68. [68]
    M. Consales, A. Crescitelli, S. Campopiano, A. Cutolo, M. Penza, P. Aversa, et al., “Chemical detection in water by single-walled carbon nanotubes-based optical fiber sensors,” IEEE Sensors Journal, vol. 7, no. 7, pp. 1004–1005, 2007.Google Scholar
  69. [69]
    A. Cusano, M. Consales, A. Cutolo, M. Penza, P. Aversa, M. Giordano, et al., “Optical probes based on optical fibers and single-walled carbon nanotubes for hydrogen detection at cryogenic temperatures,” Applied Physics Letters, vol. 89, no. 20, pp. 201106-1–201106-3, 2007.Google Scholar
  70. [70]
    S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 10, no. 1, pp. 137–146, 2004.Google Scholar
  71. [71]
    S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, et al., “Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates/fibers and their applications to mode-locked fiber lasers,” Optics Letters, vol. 29, no. 14, pp. 1581–1583, 2004.Google Scholar
  72. [72]
    K. Kashiwagi and S. Yamashita, “Optically manipulated deposition of carbon nanotubes onto optical fiber end,” Japanese Journal of Applied Physics, vol. 46, no. 40, pp. L988–L990, 2007.Google Scholar
  73. [73]
    K. K. Chow and S. Yamashita, “Four-wave mixing in a single-walled carbon-nanotube-deposited D-shaped fiber and its application in tunable wavelength conversion,” Optics Express, vol. 17, no. 18, pp. 15608–15613, 2009.Google Scholar
  74. [74]
    G. Sberveglieri, “Recent developments in semiconducting thin-film gas sensors,” Sensors and Actuators B: Chemical, vol. 23, no. 2–3, no. 103–109, 1995.Google Scholar
  75. [75]
    M. Batzill and U. Diebold, “The surface and materials science of tin oxide,” Progress in Surface Science, vol. 79, no. 24, pp. 47–154, 2005.Google Scholar
  76. [76]
    M. Pisco, M. Consales, S. Campopiano, A. Cutolo, R. Viter, V. Smyntyna, et al., “A novel opto-chemical sensor based on SnO2 sensitive thin film for ppm ammonia detection in liquid environment,” Journal of Lightwave Technology, vol. 24, no. 12, pp. 5000–5007, 2006.Google Scholar
  77. [77]
    A. Cusano, M. Consales, M. Pisco, P. Pilla, A. Cutolo, A. Buosciolo, et al., “Opto-chemical sensor for water monitoring based on SnO2 particle layer deposited onto optical fibers by the electrospray pyrolysis method,” Applied Physics Letters, vol. 89, no. 11, pp. 111103-1–111103-3, 2006.Google Scholar
  78. [78]
    A. Buosciolo, M. Consales, M. Pisco, A. Cusano, and M. Giordano, “Fiber optic near-field chemical sensors based on wavelength scale tin dioxide particle layers,” Journal of Lightwave Technology, vol. 26, no. 20, pp. 3468–3475, 2008.Google Scholar
  79. [79]
    A. Cusano, P. Pilla, M. Consales, M. Pisco, A. Cutolo, A. Buosciolo, et al., “Near field behavior of SnO2 particle-layer deposited on standard optical fiber by electrostatic spray pyrolysis method,” Optics Express, no. 15, no. 8, pp. 5136–5146, 2007.Google Scholar
  80. [80]
    M. Fossa and P. Petagna, “Use and calibration of capacitive RH sensors for the hygrometric control of the CMS tracker,” CMS NOTE2003/24, Cern, Geneve, Switzerland, 2003.Google Scholar
  81. [81]
    M. Consales, A. Buosciolo, A. Cutolo, G. Breglio, A. Irace, S. Buontempo, et al., “Fiber optic humidity sensors for high-energy physics application at CERN,” Sensors and Actuators B: Chemical, vol. 159, no. 1, pp 66–74, 2011.Google Scholar
  82. [82]
    M. C. Phan Huy, G. Laffont, Y. Frignac, V. Dewynter-Marty, P. Ferdinand, P. Roy, et al., “Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement,” Measurement Science and Technology, vol. 17, no. 5, pp. 992–997, 2006.Google Scholar
  83. [83]
    M. C. Phan Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J. L. Auguste, et al., “Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer,” Optics Letters, vol. 32, no. 16, pp. 2390–2392, 2007.Google Scholar
  84. [84]
    L. Rindorf, P. E. Hoiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Analytical and Bioanalytical Chemistry, vol. 385, no. 8, pp. 1370–1375, 2006.Google Scholar
  85. [85]
    C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. B. Cruz, et al., “Microstructured-core optical fibre for evanescent sensing applications,” Optics Express, vol. 14, no. 26, pp. 13056–13066, 2006.Google Scholar
  86. [86]
    Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Applied Physics Letters, vol. 85, no. 22, pp. 5182–5184, 2004.Google Scholar
  87. [87]
    S. Smolka, M. Barth, and O. Benson, “Highly efficient fluorescence sensing with hollow core photonic crystal fibers,” Optics Express, vol. 15, no. 20, pp. 12783–12791, 2007.Google Scholar
  88. [88]
    J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Optics Express, vol. 13, no. 15, pp. 5883–5889, 2005.Google Scholar
  89. [89]
    S. Smolka, M. Barth, and O. Benson, “Selectively coated photonic crystal fiber for highly sensitive fluorescence detection,” Applied Physics Letters, vol. 90, no. 11, pp. 111101, 2007.Google Scholar
  90. [90]
    S. O. Konorov, A. M. Zheltikov, and M. Scalora, “Photonic-crystal fiber as a multifunctional optical sensor and sample collector,” Optics Express, vol. 13, no. 9, pp. 3454–3459, 2005.Google Scholar
  91. [91]
    S. Afshar v., S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Optics Express, vol. 15, no. 26, pp. 17891–17901, 2007.Google Scholar
  92. [92]
    T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, et al., “Gas sensing using air-guiding photonic bandgap fibers,” Optics Express, vol. 12, no. 17, pp. 4080–4087, 2004.Google Scholar
  93. [93]
    Y. Ruan, T. C. Foo, St. Warren-Smith, P. Hoffmann, R. C. Moore, H. Ebendorff-Heidepriem, et al., “Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors,” Optics Express, vol. 16, no. 22, pp. 18514–18523, 2008.Google Scholar
  94. [94]
    J. Canning, “Structured optical fibres and the application of their linear and non-linear properties,” in Selected topics in photonic crystals and metamaterials, A. Andreone, A. Cusano, A. Cutolo, and V. Galdi, Eds. Singapore: World Scientific Publishing Co. Pte. Ltd., 2011, pp. 389–452.Google Scholar
  95. [95]
    T. Larson, J. Broeng, D. Hermann, and A. Bjarklev, “Thermo-optic switching in liquid crystal infiltrated photonic bandgap fibres,” Electronics Letters, vol. 39, no. 24, pp. 1719–1720, 2003.Google Scholar
  96. [96]
    T. Larson, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Optics Express, vol. 11, no. 20, pp. 2589–2596, 2003.Google Scholar
  97. [97]
    M. Haakestad, M. Alkeskjold, M. Nielsen, L. Scolari, J. Riishede, H. Engan, et al., “Electrically tuneable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fibre,” IEEE Photonics Technology Letters, vol. 17, no. 4, pp. 819–821, 2005.Google Scholar
  98. [98]
    J. Hou, D. Bird, A. George, S. Maier, B. T. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Optics Express, vol. 16, no. 9, pp. 5983–5990, 2008.Google Scholar
  99. [99]
    C. Grillet, P. Domachuk, V. Taeed, E. Mägi, J. Bolger, B. Eggleton, et al., “Compact tunable microfluidic interferometer,” Optics Express, vol. 12, no. 24, pp. 5440–5447, 2004.Google Scholar
  100. [100]
    A. Cusano, M. Pisco, M. Consales, A. Cutolo, M. Giordano, M. Penza, et al., “Novel opto-chemical sensors based on hollow fibers and single walled carbon nanotubes,” IEEE Photonics Technology Letters, vol. 18, no. 22, pp. 2431–2433, 2006.Google Scholar
  101. [101]
    M. Pisco, M. Consales, A. Cutolo, M. Penza, P. Aversa, and A. Cusano, “Hollow fibers integrated with single walled carbon nanotubes: bandgap modification and chemical sensing capability,” Sensors and Actuators B: Chemical, vol. 129, no. 1, pp. 163–170, 2008.Google Scholar
  102. [102]
    C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, “Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber,” Optics Communications, vol. 204, no. 1–6, pp. 179–184, 2002.Google Scholar
  103. [103]
    C. Martelli, P. Olivero, J. Canning, N. Groothoff, B. Gibson, and S. Huntington, “Micromachining structured optical fibers using focused ion beam milling,” Optics Letters, vol. 32, no. 11, pp. 1575–1577, 2007.Google Scholar
  104. [104]
    S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, et al., “Stimulated Raman scattering in an ethanol core microstructured optical fiber,” Optics Express, vol. 13, no. 12, pp. 4786–4791, 2005.Google Scholar
  105. [105]
    K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P., Hansen, “Selective filling of photonic crystal fibres,” Journal of Optics A: Pure and Applied Optics, vol. 7, no. 8, pp. L13–L20, 2005.Google Scholar
  106. [106]
    L. Xiao, W. Jin, M. S. Demokan, H. L. Ho, Y. L. Hoo, and C. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Optics Express, vol. 13, no. 22, pp. 9014–9022, 2005.Google Scholar
  107. [107]
    C. J. De Matos, C. M. B. Cordeiro, E. M. Dos Santos, J. S. Ong, A. Bozolan, and C. H. B. Cruz, “Liquid-core, liquid-cladding photonic crystal fibers,” Optics Express, vol. 15, no. 18, pp. 11207–11212, 2007.Google Scholar
  108. [108]
    J. Canning, M. Stevenson, T. K. Yip, S. K. Lim, and C. Martelli, “White light sources based on multiple precision selective micro-filling of structured optical waveguides,” Optics Express, vol. 16, no. 20, pp. 15700–15708, 2008.Google Scholar
  109. [109]
    Y. Han and H. Du, “Photonic crystal fiber for chemical sensing using surface-enhanced Raman scattering,” in Photonic Bandgap Structures: Novel Technological Platforms for Physical, Chemical and Biological Sensing. M. Pisco, A. Cusano and, A. Cutolo, Ed. Oak Park, IL: Bentham Science Publisher, 2012, pp. 157–179.Google Scholar
  110. [110]
    X. Yang, C. Shi, R. Newhouse, J. Z. Zhang, and C. Gu, “Hollow-core photonic crystal fibers for surfaceenhanced Raman scattering probes,” International Journal of Optics, vol. 2011 (article ID 754610), pp 754610-1–754610-11, 2011.Google Scholar
  111. [111]
    H. Yan, J. Liu, C. Yang, G. Jin, C. Gu, and L. Hou, “Novel index-guided photonic crystal fiber surface-enhanced Raman scattering probe,” Optics Express, vol. 16, no. 11, pp. 8300–8305, 2008.Google Scholar
  112. [112]
    A. Amezcua-Correa, J. Yang, and C. E. Finlayson, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Advanced Functional Materials, vol. 17, no. 13, pp. 2024–2030, 2007.Google Scholar
  113. [113]
    M. K. Khaing Oo, Y. Han, R. Martini, S. Sukhishvili, and H. Du, “Forward-propagating surface-enhanced Raman scattering and intensity distribution in photonic crystal fiber with immobilized Ag nanoparticles,” Optics Letters, vol. 34, no. 7, pp. 968–970, 2009.Google Scholar
  114. [114]
    M. K. Khaing Oo, Y. Han, J. Kanka, S. Sukhishvili, and H. Du, “Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy,” Optics Letters, vol. 35, no. 4, pp. 466–468, 2010.Google Scholar
  115. [115]
    Y. Han, S. Tan, M. K. Khaing Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Advanced Materials, vol. 22, no. 24, pp. 2647–2651, 2010.Google Scholar
  116. [116]
    G. Whitesides, J. Kriebel, and B. Mayers, “Self-assembly and nanostructured materials,” in Nanoscale Assembly: Chemical techniques. B. T. Mayers, Ed. New York: Springer US, 2009, pp. 217–239.Google Scholar
  117. [117]
    F. J. Arregui, I. R. Matias, J. M. Corres, I. Del Villar, J. Goicoechea, C. R. Zamarreño, et al. “Optical fiber sensors based on layer-by-layer nanostructured films,” Procedia Engineering, vol. 5, pp. 1087–1090, 2010.Google Scholar
  118. [118]
    I. Del Villar, I. R. Matias, and F. J. Arregui, “Fiber-optic chemical nanosensors by electrostatic molecular self-assembly,” Current Analytical Chemistry, vol. 4, no. 4, pp. 341–355, 2008.Google Scholar
  119. [119]
    J. Homola, S. S. Yeea, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B: Chemical, vol. 54, no. 1–2, pp. 3–15, 1999.Google Scholar
  120. [120]
    J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chemical Reviews, vol. 108, no. 2, pp. 462–493, 2008.Google Scholar
  121. [121]
    M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, et al., “Nanostructured plasmonic sensors,” Chemical Reviews, vol. 108, no. 2, pp. 494–521, 2008.Google Scholar
  122. [122]
    S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors, vol. 11, no. 2, pp. 1565–1588, 2011.Google Scholar
  123. [123]
    A. K. Sharma and B. D. Gupta, “Fibre-optic sensor based on surface plasmon resonance with Ag-Au alloy nanoparticle films,” Nanotechnology, vol. 17, no. 1, pp. 124–131, 2006.MathSciNetGoogle Scholar
  124. [124]
    M. Kanso, S. Cuenot, and G. Louarn, “Sensitivity of optical fiber sensor based on surface plasmon resonance: Modeling and experiments,” Plasmonics, vol. 3, no. 2–3, pp. 49–57, 2008.Google Scholar
  125. [125]
    E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosensors and Bioelectronics, vol. 11, no. 6, pp. 635–649, 1996.Google Scholar
  126. [126]
    J. Homola, I. Koudela, and S. Yee, “Surface plasmon resonance sensor based on diffraction gratings and prism couplers: sensitivity comparison,” Sensors and Actuators B: Chemical, vol. 54, no. 1–2, pp. 16–24, 1999.Google Scholar
  127. [127]
    N. Díaz-Herrera, A. González-Cano, D. Viegas, J. L. Santos, and M. C. Navarrete, “Refractive index sensing of aqueous media based on plasmonic resonance in tapered optical fibres operating in the 1.5 μm region,” Sensors and Actuators B: Chemical, vol. 146, no. 1, pp. 195–198, 2010.Google Scholar
  128. [128]
    S. F. Wang, M. H. Chiu, J. C. Hsu, R. S. Chang, and F. T. Wang, “Theoretical analysis and experimental evaluation of D-type optical fiber sensor with a thin gold film,” Optics Communications, vol. 253, no. 4–6, pp. 283–289, 2005.Google Scholar
  129. [129]
    M. H. Chiu and C. H. Shih, “Searching for optimal sensitivity of single-mode D-type optical fiber sensor in the phase measurement,” Sensors and Actuators B: Chemical, vol. 131, no. 2, pp. 1120–1124, 2008.Google Scholar
  130. [130]
    M. Erdmanis, D. Viegas, M. Hautakorpi, S. Novotny, J. Santos, and H. Ludvigsen, “Comprehensive numerical analysis of a surface-plasmon-resonance sensor based on an H-shaped optical fiber,” Optics Express, vol. 19, no. 15, pp. 13980–13988, 2011.Google Scholar
  131. [131]
    R. Slavik, J. Homola, and J. Ctyroky, “Miniaturization of fiber optic surface Plasmon resonance sensor,” Sensors and Actuators B: Chemical, vol. 51, no. 1–3, pp. 311–315, 1998.Google Scholar
  132. [132]
    W. J. H. Bender, R. E. Dessy, M. S. Miller, and R. O. Claus, “Feasibility of a chemical microsensor based on surface plasmon resonance on fiber optics modified by multilayer vapor deposition,” Analytical Chemistry, vol. 66, no. 7, pp. 963–970, 1994.Google Scholar
  133. [133]
    M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sensors and Actuators B: Chemical, vol. 90, no. 1–3, pp. 236–242, 2003.Google Scholar
  134. [134]
    M. H. Chiu, C. H. Shih, and M. H. Chi, “Optimum sensitivity of single-mode D-type optical fiber sensor in the intensity measurement,” Sensors and Actuators B: Chemical, vol. 123, no. 2, pp. 1120–1124, 2007.Google Scholar
  135. [135]
    R. Slavik, J. Homola, J. Ctyroky, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sensors and Actuators B: Chemical, vol. 74, no. 1–3, pp. 106–111, 2001.Google Scholar
  136. [136]
    Y. J. He, Y. L. Lo, and J. F. Huang, “Optical-fiber surface-plasmon-resonance sensor employing long-period fiber gratings in multiplexing,” Journal of the Optical Society of America B, vol. 23, no. 5, pp. 801–811, 2006.Google Scholar
  137. [137]
    J. L. Tang, S. F. Cheng, W. T. Hsu, T. Y. Chiang, and L. K. Chau, “Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating,” Sensors and Actuators B: Chemical, vol. 119, no. 1, pp. 105–109, 2006.Google Scholar
  138. [138]
    G. Nemova and R. Kashyap, “Fiber Bragg grating assisted surface plasmon polariton sensor,” Optics Letters, vol. 31, no. 14, pp. 2118–2120, 2006.Google Scholar
  139. [139]
    G. Nemova and R. Kashyap, “Modeling of plasmon-polariton refractive-index hollow core fiber sensors assisted by a fiber Bragg grating,” Journal of Lightwave Technology, vol. 24, no. 10, pp. 3789–3796, 2006.Google Scholar
  140. [140]
    T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Characterization of infrared surface plasmon resonances generated from a fiber-optical sensor utilizing tilted Bragg gratings,” Journal of the Optical Society of America B, vol. 25, no. 4, pp. 481–490, 2008.Google Scholar
  141. [141]
    W. Ding, S. R. Andrews, T. A. Birks, and S. A. Maier, “Modal coupling in fiber tapers decorated with metallic surface gratings,” Optics Letters, vol. 31, no. 17, pp. 2556–2558, 2006.Google Scholar
  142. [142]
    B. Gauvreau, A. Hassani, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic bandgap fiber-based surface plasmon resonance sensors,” Optics Express, vol. 15, no. 18, pp. 11413–11426, 2007.Google Scholar
  143. [143]
    M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Optics Express, vol. 16, no. 12, pp. 8427–8432, 2008.Google Scholar
  144. [144]
    A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Optics Express, vol. 14, no. 24, pp. 11616–11621, 2006.Google Scholar
  145. [145]
    A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics, vol. 28, no. 3, pp. 198–213, 2008.Google Scholar
  146. [146]
    S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Physical Review B, vol. 60, no. 8, pp. 5751–5758, 1999.Google Scholar
  147. [147]
    S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Physical Review B, vol. 65, no. 23, pp. 235112-1–235112-8, 2002.Google Scholar
  148. [148]
    A. Ricciardi, I. Gallina, S. Campopiano, G. Castaldi, M. Pisco, V. Galdi, et al., “Guided resonances in photonic quasicrystals,” Optics Express, vol. 17, no. 8, pp. 6335–6346, 2009.Google Scholar
  149. [149]
    M. Pisco, A. Ricciardi, I. Gallina, G. Castaldi, S. Campopiano, A. Cutolo, et al., “Tuning efficiency and sensitivity of guided resonances in photonic crystals and quasi-crystals: a comparative study,” Optics Express, vol. 18, no. 16, pp. 17280–17293, 2010.Google Scholar
  150. [150]
    A. Ricciardi, M. Pisco, I. Gallina, S. Campopiano, V. Galdi, L. O’Faolain, et al., “Experimental evidence of guided-resonances in photonic crystals with aperiodically ordered supercells,” Optics Letters, vol. 35, no. 23, pp. 3946–3948, 2010.Google Scholar
  151. [151]
    A. Ricciardi, M. Pisco, A. Cutolo, A. Cusano, L. O’Faolain, T. F. Krauss, et al., “Evidence of guided resonances in photonic quasicrystal slabs,” Physical Review B, vol. 84, no. 8, pp. 085135-1–085135-4, 2011.Google Scholar
  152. [152]
    X. Yu, L. Shi, D. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Advanced Functional Materials, vol. 20, no. 12, pp. 1910–1916, 2010.Google Scholar
  153. [153]
    S. D. Hart, G. R. Maskaly, B. Temelkuran, P. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science, vol. 296, no. 5567, pp. 510–513, 2002.Google Scholar
  154. [154]
    M. Bayindir, A. F. Abouraddy, F. Sorin, J. D. Joannopoulos, and Y. Fink, “Fiber photodetectors codrawn from conducting, semiconducting and insulating materials,” Optics and Photonics News, vol. 15, no. 12, pp. 14–24, 2004.Google Scholar
  155. [155]
    M. Bayindir, F. Sorin, S. Hart, O. Shapira, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibre” Nature, vol. 431, no. 7010, pp. 826–829, 2004.Google Scholar
  156. [156]
    K. Kuriki, O. Shapira, S. D. Hart, G. Benoit, Y. Kuriki, J. Viens, et al., “Hollow multilayer photonic bandgap fibers for NIR applications,” Optics Express, vol. 12, no. 8, pp. 1510–1517, 2004.Google Scholar
  157. [157]
    M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, et al., “Integrated Fibers for self monitored optical transport,” Nature Materials, vol. 4, no. 11, pp. 820–824, 2005.Google Scholar
  158. [158]
    M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Thermal-sensing fiber devices by multimaterial codrawing,” Advanced Materials, vol. 18, no. 7, pp. 845–849, 2006.Google Scholar
  159. [159]
    M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, et al., “Kilometer-long ordered nanophotonic devices by preform-to-fiber fabrication,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no. 6, pp. 1202–1023, 2006.Google Scholar
  160. [160]
    S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, et al., “Multimaterial piezoelectric fibres,” Nature Materials, vol. 9, no. 8, pp. 643–648, 2010.Google Scholar
  161. [161]
    F. Sorin and Y. Fink, “Multimaterial fiber sensors,” in Proc. SPIE, vol. 7653, pp. 765305-1–765305-9, 2010.Google Scholar
  162. [162]
    E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Letters, vol. 9, no. 3, pp. 1132–1138, 2009.Google Scholar
  163. [163]
    I. W. Jung, B. Park, J. Provine, R. T. Howe, and O. Solgaard, “Highly sensitive monolithic silicon photonic crystal fiber tip sensor for simultaneous measurement of refractive index and temperature,” Journal of Lightwave Technology, vol. 29, no. 9, pp. 1367–1374, 2011.Google Scholar
  164. [164]
    S. Scheerlinck, P. Dubruel, P. Bienstman, E. Schacht, D. Van Thourhout, and R. Baets “Metal grating patterning on fiber facets by UV-based nano imprint and transfer lithography using optical alignment,” Journal of Lightwave Technology, vol. 27, no. 10, pp. 1415–1420, 2009.Google Scholar
  165. [165]
    D. Iannuzzi, K. Heeck, M. Slaman, S. de Man, J. H. Rector, H. Schreuders, et al., “Fibre-top cantilevers: design, fabrication and applications,” Measurement Science and Technology, vol. 18, no. 10, pp. 3247–3252, 2007.Google Scholar
  166. [166]
    A. A. Said, M. Dugan, S. de Man, and D. Iannuzzi, “Carving fiber-top cantilevers with femtosecond laser micromachining,” Journal of Micromechanics and Microengineering, vol. 18, no. 3, pp. 35005–35008, 2008.Google Scholar
  167. [167]
    G. Gruca, S. de Man, M. Slaman, J. H. Rector, and D. Iannuzzi, “Ferrule-top micromachined devices: design, fabrication, performance,” Measurement Science and Technology, vol. 21, no. 9, pp. 94033–94038, 2010.Google Scholar
  168. [168]
    D. Iannuzzi, S. Deladi, M. Slaman, J. H. Rector, H. Schreuders, and M. C. Elwenspoek, “A fiber-top cantilever for hydrogen detection,” Sensors and Actuators B: Chemical, vol. 121, no. 2, pp. 706–708, 2006.Google Scholar
  169. [169]
    C. J. Alberts, S. De Man, J. W. Berenschot, V. J. Gadgil, M. C. Elwenspoek, and D. Iannuzzi, “Fiber-top refractometer,” Measurement Science and Technology, vol. 20, no. 3, pp. 034005-1–034005-5, 2009.Google Scholar
  170. [170]
    D. Iannuzzi, S. Deladi, J. W. Berenschot, S. De Man, K. Heeck, and M. C. Elwenspoek, “Fiber-top atomic force microscope,” Review of Scientific Instruments, vol. 77, no. 10, pp. 106105-1–106105-3, 2006.Google Scholar
  171. [171]
    A. Dhawan, M. D. Gerhold, and J. F. Muth, “Plasmonic structures based on subwavelength apertures for chemical and biological sensing applications,” IEEE Sensors Journal, vol. 8, no. 6, pp. 942–950, 2008.Google Scholar
  172. [172]
    Y. Lin, Y. Zou, and R. G. Lindquist, “A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing,” Biomedical Optics Express, vol. 2, no. 3, pp. 478–484, 2011.Google Scholar
  173. [173]
    D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE Journal Quantum Electronics, vol. 33, no. 11, pp. 2058–2059, 1997.Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Optoelectronic Division — Department of EngineeringUniversity of SannioBeneventoItaly

Personalised recommendations