Photonic Sensors

, Volume 2, Issue 4, pp 340–356 | Cite as

Nonadiabatic tapered optical fiber for biosensor applications

  • Hamid Latifi
  • Mohammad I. Zibaii
  • Seyed M. Hosseini
  • Pedro Jorge
Open Access


A brief review on biconical tapered fiber sensors for biosensing applications is presented. A variety of configurations and formats of this sensor have been devised for label free biosensing based on measuring small refractive index changes. The biconical nonadiabatic tapered optical fiber offers a number of favorable properties for optical sensing, which have been exploited in several biosensing applications, including cell, protein, and DNA sensors. The types of these sensors present a low-cost fiber biosensor featuring a miniature sensing probe, label-free direct detection, and high sensitivity.


Biconical tapered optical fiber nonadiabatic refractive index biosensor 


  1. [1]
    M. D. Marazuela and M. C. Moreno-Bondi, “Fiber-optic biosensors — an overview,” Analytical and Bioanalytical Chemistry, vol. 372, no. 5–6, pp. 664–682, 2002.CrossRefGoogle Scholar
  2. [2]
    A. M. Valadez, C. A. Lana, S. I. Tu, M. T. Morgan, and A. K. Bhunia, “Evanescent wave fiber optic biosensor for Salmonella detection in food,” Sensors, vol. 9, no. 7, pp. 5810–5824, 2009.CrossRefGoogle Scholar
  3. [3]
    A. W. Snyder and J. D. Love, Optical Waveguide Theory. London: Chapman and Hall, 1983.Google Scholar
  4. [4]
    W. J. Stewart and J. D. Love, “Design limitation on tapers and couplers in singlemode fiber tapers,” in Proc. ECOC 85, Venice, Oct. 1–4, pp. 559–562, 1985.Google Scholar
  5. [5]
    J. D. Love and W. M. Henry, “Quantifying loss minimisation in single-mode fiber tapers,” Electronics Letters, vol. 22, no. 17, pp. 912–914, 1986.CrossRefGoogle Scholar
  6. [6]
    M. Sumetsky, Y. Dulashko, and A. Hale, “Fabrication and study of bent and coiled free silica nanowires: self-coupling microloop optical interferometer,” Optics Express, vol. 12, no. 15, pp. 3521–3531, 2004.CrossRefGoogle Scholar
  7. [7]
    L. Shi, X. Chen, H. Liu, Y. Chen, Z. Ye, W. Liao, et al., “Fabrication of submicron-diameter silica fibers using electric strip heater,” Optics Express, vol.14, no. 12, pp. 5055–5060, 2006.CrossRefGoogle Scholar
  8. [8]
    E. J. Zhang, W. D. Sacher, and J. K. Poon, “Hydrofluoric acid flow etching of low-loss subwavelength-diameter biconical fiber tapers,” Optics Express, vol. 18, no. 21, pp. 22593–22598, 2010.CrossRefGoogle Scholar
  9. [9]
    S. Pricking and H. Giessen, “Tapering fibers with complex shape,” Optics Express, vol. 18, no. 4, pp. 3426–3437, 2010.CrossRefGoogle Scholar
  10. [10]
    V. P. Minkovich and D. Monzón-Hernández, “Microstructured optical fiber coated with thin films for gas and chemical sensing,” Optics Express, vol. 14, no. 18, pp. 8413–8418, 2006.CrossRefGoogle Scholar
  11. [11]
    J. Ju, L. Ma, and W. Jin, “Photonic bandgap fiber tapers and interferometric sensors,” in Proc. SPIE, vol. 7503, pp.75035B-1–75035B-4, 2009.CrossRefGoogle Scholar
  12. [12]
    M. I. Zibaii, H. Latifi, K. Karami, M. Gholami, S. M. Hosseini, and M. H. Ghezelayagh, “Non-adiabatic tapered optical fiber sensor for measuring the interaction between α-amino acids in aqueous carbohydrate solution,” Measurement and Science Technology, vol. 21, no. 10, pp. 105801, 2010.CrossRefGoogle Scholar
  13. [13]
    J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices: part 1. adiabaticity criteria,” IEE Proc. J. Optoelectronics, vol. 138, no. 5, pp. 343–354, 1991.CrossRefGoogle Scholar
  14. [14]
    R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, “1991 tapered single mode fibers and devices: part 2. experimental and theoretical quantification,” IEE Proc. J Optoelectronics, vol. 138, no. 5, pp. 355–364, 1991.CrossRefGoogle Scholar
  15. [15]
    I. M. White, H. Oveys, and X. Fan, “Liquid-coreoptical ring-resonator sensors,” Optics Letters, vol.31, no. 9, pp. 1319–1321, 2006.CrossRefGoogle Scholar
  16. [16]
    A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Optics Letters, vol. 31, no. 12, pp. 1896–1898, 2006.CrossRefGoogle Scholar
  17. [17]
    D. Keng, S. R. McAnanama, I. Teraoka, and S. Arnold, “Resonance fluctuations of a whispering gallery mode biosensor by particles undergoing Brownian motion,” Applied Physics Letters, vol. 91, no. 10, pp. 103902-1–103902-3, 2007.CrossRefGoogle Scholar
  18. [18]
    J. Yi, C. Y. Jao, I. L. N. Kandas, B. Liu, Y. Xu, and H. D. Robinson, “Irreversible adsorption of gold nanospheres on fiber optical tapers and microspheres,” Applied Physics Letters, vol. 100, no. 15, pp.153107-1–153107-4, 2012.CrossRefGoogle Scholar
  19. [19]
    F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Applied Physics Letters, vol. 80, no. 21, pp. 4057–4059, 2002.CrossRefGoogle Scholar
  20. [20]
    K. Q. Kieu and M. Mansuripur, “Biconical fiber taper sensor,” IEEE Photonics Technology Letters, vol. 18, no. 21, pp. 2239–2241, 2006.CrossRefGoogle Scholar
  21. [21]
    P. Datta, C. Matias, C. Aramburu, A. Bakas, M. Lopez-Amo, and J. M. Oton, “Tapered optical fiber temperature sensor,” Microwave Optical Technology Letters, vol. 11, no. 2, pp. 93–95, 1996.CrossRefGoogle Scholar
  22. [22]
    J. M. Corres, J. Bravo, I. R. Matias, and F. J. Arregui, “Nonadiabatic tapered single-mode fiber coated with humidity sensitive nanofilms,” IEEE Photonics Technology Letters, vol. 18, no. 8, pp.935–937, 2006.CrossRefGoogle Scholar
  23. [23]
    B. S. Kawasaki, K. O. Hill, and R. C. Lamont, “Biconical taper single-mode fiber coupler,” Optics Letter, vol. 6, no. 7, pp. 327–328, 1981.CrossRefGoogle Scholar
  24. [24]
    W. Bums, M. Abebe, C. Villarruel, and R. Moeller, “Loss mechanisms in single-mode tapers,” Journal of Lightwave Technology, vol. 4, no. 6, pp. 608–613, 1986.CrossRefGoogle Scholar
  25. [25]
    L. C. Bobb, P. M. Shankar, and H. D. Krumboltz., “Bending effects in biconically tapered single-mode fibers,” Journal of Lightwave Technology, vol. 8, no. 7, pp. 1084–1090, 1990.CrossRefGoogle Scholar
  26. [26]
    F. Gonthier, A. Henault, S. Lacroix, R. J. Black, and J. Bures, “Mode coupling in nonuniform fibers: comparison between coupled-mode theory and finite-difference beam-propagation method simulations,” Optical Society of America B: Optical Physics, vol. 8, no. 2, pp. 416–421, 1991.CrossRefGoogle Scholar
  27. [27]
    P. N. Moar, S. T. Huntington, J. Katsifolis, L. W. Cahill, A. Roberts, and K. A. Nugent, “Fabrication, modeling, and direct evanescent field measurement of tapered optical fiber sensors,” Journal of Applied Physics, vol. 85, no. 7, pp. 3395–3398, 1999.CrossRefGoogle Scholar
  28. [28]
    A. J. Fielding and C. C. Davis, “Tapered single-mode optical fiber evanescent coupling,” IEEE Photonics Technology Letters, vol. 14, no. 1, pp. 53–55, 2002.CrossRefGoogle Scholar
  29. [29]
    I. R. Matias, C. F. Valdivielso, F. J. Arregui, C. Bariain, and M. L. Amo, “Transmitted optical power through a tapered single-mode fiber under dynamic bending effects,” Fiber and Integrated Optics, vo. 22, no. 3, pp. 173–187, 2003.CrossRefGoogle Scholar
  30. [30]
    M. Ahmad and L. L. Hench, “Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers,” Biosensors and Bioelectronics, vol. 20, no. 7, pp. 1312–1319, 2005.CrossRefGoogle Scholar
  31. [31]
    A. J. C. Tubb, F. P. Payne, R. Millington, and C. R. Lowe, “Singlemode optical fiber surface plasma wave chemical sensor,” Electronics Letters, vol. 31 no. 20, pp. 1770–1771, 1995.CrossRefGoogle Scholar
  32. [32]
    Ó. Esteban, N. Díaz-Herrera, M. C. Navarrete, and A. González-Cano, “Surface plasmon resonance sensors based on uniform-waist tapered fibers in a reflective configuration,” Applied Optics, vol. 45, no. 28, pp. 7294–7298, 2006.CrossRefGoogle Scholar
  33. [33]
    R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Optics Communications, vol. 281, no. 6, pp. 1486–1491, 2008.CrossRefGoogle Scholar
  34. [34]
    N. Díaz-Herrera, A. González-Cano, D. Viegas, J. Luís. Santos, and M. C. Navarrete, “Refractive index sensing of aqueous media based on plasmonic resonance in tapered optical fibers operating in the 1.5 μm region,” Sensors and Actuators B: Chemical, vol. 146, no. 1, pp. 195–198.Google Scholar
  35. [35]
    N. Díaz-Herrera, O. Esteban, M. C. Navarrete, A. González-Cano, E. Benito-Pena, and G. Orellana, “Improved performance of SPR sensors by a chemical etching of tapered optical fibers,” Optics and Lasers in Engineering, vol. 49, no. 8, pp. 1065–1068, 2011.CrossRefGoogle Scholar
  36. [36]
    A. Kumar, T. V. B. Subrahmonium, A. D. Sharma, K. Thyagarajan, B. P. Pal, and I. C. Goyal, “Novel refractometer using a tapered optical fiber,” Electronics Letters, vol. 20, no. 13, pp. 534–535, 1984.CrossRefGoogle Scholar
  37. [37]
    J. Villiatoro, D. Monzoon-Hernandez, and D. Talavera, “High resolution refractive index sensing with cladded multimode tapered optical fiber,” Electronics Letters, vol. 40, no. 2, pp.106–107, 2004.CrossRefGoogle Scholar
  38. [38]
    P. Wang, G. Brambilla, M. Ding, Y. Semenova, and Q. Wu, G. Farrell, “High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference,” Optics Letters, vol. 36, no. 12, pp. 2233–2235, 2011.CrossRefGoogle Scholar
  39. [39]
    P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Optics Letters, vol. 30, no. 11, pp. 1273–1275, 2005.CrossRefGoogle Scholar
  40. [40]
    J. Arrue, F. Jiménez, G. Aldabaldetreku, G. Durana, J. Zubia, M. Lomer, et al., “Analysis of the use of tapered graded-index polymer optical fibers for refractive-index sensors,” Optics Express, vol. 16, no. 21, pp. 16616–16631, 2008.Google Scholar
  41. [41]
    A. Leung, P. Mohana Shankar, and R. Mutharasan, “Model protein detection using antibody-immobilized tapered fiber optic biosensors (TFOBS) in a flow cell at 1310 nm and 1550 nm,” Sensors and Actuators B: Chemical, vol. 129, no. 2, pp. 716–725, 2008.CrossRefGoogle Scholar
  42. [42]
    G. Cohoon, C. Boyter, M. Errico, K. Vandervoort, and E. Salik, “Enhancing sensitivity of biconical tapered fiber sensors with multiple passes through the taper,” Optical Engineering, vol. 49, no. 3, pp. 034401–5, 2010.CrossRefGoogle Scholar
  43. [43]
    H. A. Rahman, S. W. Harun, M. Yasin, S. W. Phang, S. S. A. Damanhuri, H. Arof, et al., “Tapered plastic multimode fiber sensor for salinity detection,” Sensors and Actuators A: Physical, vol. 171, no. 2, pp. 219–222, 2011.CrossRefGoogle Scholar
  44. [44]
    C. Beres, F. V. B. Nazaré, N. C. C. Souza, M. A. L. Miguel, and M. M. Werneck, “Tapered plastic optical fiber-based biosensor — tests and application,” Biosensors and Bioelectronics, vol. 30, no. 1, pp. 328–332, 2011.Google Scholar
  45. [45]
    J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photonics Technology Letters, vol. 17, no. 6, pp. 1247–1249, 2005.CrossRefGoogle Scholar
  46. [46]
    T. Allsop, F. Floreani, K. P. Jedrzejewski, P. V. S. Marques, R. Romero, D. J. Webb, et al., “Spectral characteristics of tapered LPG device as a sensing element for refractive index and temperature,” Journal of Lightwave Technology, vol. 24, no. 2, pp. 870–878, 2006.CrossRefGoogle Scholar
  47. [47]
    D. Grobnic, S. J. Mihailov, D. Huimin, and C. W. Smelser, “Bragg grating evanescent field sensor made in biconical tapered fiber with femtosecond IR radiation,” IEEE Photonics Technology Letters, vol. 18, no. 1, pp. 160–162, 2006.CrossRefGoogle Scholar
  48. [48]
    W. Liang, Y. Y. Huang, Y. Xu, K. L. Reginald, and Y. Amnon, “Highly sensitive fiber Bragg grating refractive index sensors,” Applied Physics Letters, vol. 86, no. 15, pp. 151122-1–151122-3, 2005.CrossRefGoogle Scholar
  49. [49]
    X. Fang, C. R. Liao, and D. N. Wang “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Optics Letters, vol. 35, no. 7, pp. 1007–1009, 2010.CrossRefGoogle Scholar
  50. [50]
    M. I. Zibaii, O. Frazão, H. Latifi, and P. A. S. Jorge, “Controlling the sensitivity of refractive index measurement using a tapered fiber loop mirror,” IEEE Photonics Technology Letters, vol. 23, no. 17, pp. 1219–1221, 2011.CrossRefGoogle Scholar
  51. [51]
    O. Frazão, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors, vol. 7, no. 11, pp. 2970–2983, 2007.CrossRefGoogle Scholar
  52. [52]
    W. E. Moerner, “New directions in single-molecule imaging and analysis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 31, pp. 12596–12602, 2007.CrossRefGoogle Scholar
  53. [53]
    W. G. Cox and V. L. Singer, “Fluorescent DNA hybridization probe preparation using amine modification and reactive dye coupling,” Biotechniques, vol. 36, no. 1, pp.114–122, 2004.Google Scholar
  54. [54]
    E. A. James, K. Schmeltzer, and F. S. Ligler, “Detection of endotoxin using an evanescent wave fiber-optic biosensor,” Applied Biochemistry and Biotechnology, vol. 60, no. 3, pp. 189–202, 1996.CrossRefGoogle Scholar
  55. [55]
    Z. M. Hale, F. P. Payne, R. S. Marks, C. R. Lowe, C. R. Lowe, and M. M. Levine, “The single mode tapered optical fiber loop immunosensor,” Biosensors and Bioelectronics, vol. 11, no. 1–2, pp. 137–148, 1996.CrossRefGoogle Scholar
  56. [56]
    U. Narang, G. P. Anderson, F. S. Ligler, and J. Burans, “Fiber optic-based biosensor for ricin,” Biosensors and Bioelectronics, vol. 12, no. 9–10, pp. 937–945, 1997.CrossRefGoogle Scholar
  57. [57]
    S. Pilevar, C. C. Davis, and F. Portugal, “Tapered optical fiber sensor using near infrared fluorophores to assay hybridization,” Analytical Chemistry, vol. 70, no. 10, pp. 2031–2037, 1998.CrossRefGoogle Scholar
  58. [58]
    H. S. Haddock, P. M. Shankar, and R. Mutharasan, “Evanescent sensing of biomolecules and cells,” Sensors Actuators B: Chemical, vol. 88, no. 1, pp. 67–74, 2003.CrossRefGoogle Scholar
  59. [59]
    A. P. Ferreira, M. M. Werneck, and R. M. Ribeiro, “Development of an evanescent-field fiber optic sensor for Escherichia coli O157: H7,” Biosensors and Bioelectronics, vol. 16, no. 6, pp. 399–408, 2001.CrossRefGoogle Scholar
  60. [60]
    K. Rijal, A. Leung, P. M. Shankar, and R. Mutharasan, “Detection of vathoizen Escherichia coli O157: H7 AT 70 cells/mL using antibody-immobilized biconical tapered fiber sensors,” Biosensor and Bioelectronics, vol. 21, no. 6, pp. 871–880, 2005.CrossRefGoogle Scholar
  61. [61]
    D. Maraldo, P. M. Shankar, and R. Mutharasan, “Measuring bacterial growth by tapered fiber and changes in evanescent field,” Biosensors and Bioelectronics, vol. 21, no. 7, pp. 1339–1344, 2006.CrossRefGoogle Scholar
  62. [62]
    M. I. Zibaii, A. Kazemi, H. Latifi, M. Karimi Azar, S. M. Hosseini, and M. H. Ghezelaiagh, “Measuring bacterial growth by refractive index tapered fiber optic biosensor,” Photochemistry and Photobiology B: Biology, vol. 101, no. 3, pp. 313–320, 2010.CrossRefGoogle Scholar
  63. [63]
    H. Tazawa, T. Kanie, and M. Katayama, “Fiber-optic coupler based refractive index sensor and its application to biosensing,” Applied Physics Letters, vol. 91, no. 11, pp. 113901-1–113901-3, 2007.CrossRefGoogle Scholar
  64. [64]
    A. Leung, P. M. Shankar, and R. Mutharasan, “Real-time monitoring of bovine serum albumin at femtogram/mL levels on antibody immobilized tapered fibers,” Sensors Actuators B: Chemical, vol. 123, no. 2, pp. 888–895, 2007.CrossRefGoogle Scholar
  65. [65]
    J. M. Corres, I. R. Matias, J. Bravo, and F. J. Arregui, “Tapered optical fiber biosensor for the detection of anti-gliadin antibodies,” Sensors and Actuators B: Chemical, vol. 135, no. 1, pp. 166–171, 2008.CrossRefGoogle Scholar
  66. [66]
    M. I. Zibaii, H. Latifi, M. Arabsorkhi, A. Kazemi, M. Gholami, M. Karimi Azar, et al., “Biconical tapered optical fiber biosensor for real-time monitoring of bovine serum albumin at femtogram/mL levels on antibodyimmobilized tapered fibers,” in Proc. SPIE, vol. 7653, pp. 765322, 2010.CrossRefGoogle Scholar
  67. [67]
    A. Leung, P. M. Shankar, and R. Mutharasan, “Label-free detection of DNA hybridization using gold-coated tapered fiber optic biosensors (TFOBS) in a flow cell at 1310 nm and 1550 nm,” Sensors and Actuators B: Chemical, vol. 131, no. 2, pp. 640–645, 2008.CrossRefGoogle Scholar
  68. [68]
    M. I. Zibaii, Z. Taghipour, Z. Saeedian, H. Latifi, M. Gholami, and S. M. Hosseini, “Kinetic study for the hybridization of 25-mer DNA by nonadiabatic tapered optical fiber sensor,” in Proc. SPIE-OSA-IEEE, China, Nov. 13–16, vol. 8311, pp. 831109-1–831109-6, 2011.Google Scholar

Copyright information

© The Author(s) 2012

This article is published under license to BioMed Central Ltd. Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Hamid Latifi
    • 1
  • Mohammad I. Zibaii
    • 1
    • 3
  • Seyed M. Hosseini
    • 2
  • Pedro Jorge
    • 3
  1. 1.Laser & Plasma Research InstituteShahid Beheshti UniversityEvin, TehranIran
  2. 2.Department of Microbiology, Faculty of Biological SciencesShahid Beheshti UniversityEvin, TehranIran
  3. 3.INESC PortoPortoPortugal

Personalised recommendations