Advertisement

Photonic Sensors

, Volume 3, Issue 1, pp 67–73 | Cite as

Modeling refractive index change in writing long-period fiber gratings using mid-infrared laser radiation

  • João M. P. Coelho
  • Marta C. Nespereira
  • Manuel Abreu
  • José M. Rebordão
Open Access
Regular

Abstract

The research on the use of fiber sensors based on long-period fiber gratings inscribed by CO2 laser mid-infrared radiation has increased in the last years. In this paper, a set of analytical expressions are used to model the interaction between laser radiation and an optical fiber and to determine the resulting refractive index change. Thermal and residual stress analysis is exemplified for a standard single mode fiber, demonstrating the capability of these models to point out the necessary parameters to achieve proper optical fiber devices based on long period fiber gratings. Experimental results are also presented.

Keywords

Optical fiber sensors fiber gratings laser processing refractive index thermo-mechanical processes 

References

  1. [1]
    A. D. Kersey, M. A. Davis, J. P. Heather, M. LeBlanc, K. P. Koo, C. G. Askins, et al., “Fiber grating sensors,” Journal of Lightwave Technology, vol. 15, no. 8, pp. 1442–14463, 1997.ADSCrossRefGoogle Scholar
  2. [2]
    C. Silva, J. M. P. Coelho, P. Caldas, O. Frazão, P. A. Jorge, and J. L. Santos, “Optical fiber sensing system based on long-period gratings for remote refractive index measurement in aqueous environments,” Fiber and Integrated Optics, vol. 29, no. 3, pp. 160–169, 2009.CrossRefGoogle Scholar
  3. [3]
    A. Martinez-Rios, D. Monzon-Hernandez, Ismael Torres-Gomez, and G. Salceda-Delgado, “Long period fiber gratings,” in Fiber Optic Sensors. Moh. Yasin, S. Harun and H. Arof, Ed. Ridjeka, Croatia: InTech, pp. 275–291, 2012.Google Scholar
  4. [4]
    C. Silva, J. M. P. Coelho, P. Caldas, and P. Jorge, “Fiber sensing system based on long-period gratings for monitoring aqueous environments,” in Fiber Optic Sensors. Moh. Yasin, S. Harun and H. Arof, Ed. Ridjeka, Croatia: InTech, pp. 317–341, 2012.Google Scholar
  5. [5]
    S. Savin, M. J. F. Digonnet, G. S. Kino, and H. J. Shaw, “Tunable mechanically induced long-period fiber gratings,” Optics Letters, vol. 25, no. 10, pp. 710–712, 2000.ADSCrossRefGoogle Scholar
  6. [6]
    M. Vaziri and C. L. Chen, “An etched two-mode fiber modal coupling element,” Journal of Lightwave Technology, vol. 15, no. 3, pp. 474–481, 1997.ADSCrossRefGoogle Scholar
  7. [7]
    G. M. Rego, “Arc-induced long-period fiber gratings: fabrication and their application in communications and sensing,” Ph. D. dissertation, Dept. Elect. Comp. Eng., Univ. of Porto, Porto, Portugal, 2006.Google Scholar
  8. [8]
    J. Estudillo-Ayala, R. Mata-Chavez, J. Hernandez-Garcia, and R. Rojas-Laguna, “Long period fiber grating produced by arc discharges,” in Fiber Optic Sensors. Moh. Yasin, S. Harun and H. Arof, Ed. Ridjeka, Croatia: InTech, pp. 295–316, 2012.Google Scholar
  9. [9]
    A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, B. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” in Optical Fiber Communication Conference (OFC), San Diego, CA, Feb. 1995, pp. PD4–2, 1995.Google Scholar
  10. [10]
    A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” Journal of Lightwave Technology, vol. 14, no. 1, pp 58–65, 1996.ADSCrossRefGoogle Scholar
  11. [11]
    D. D. Davis, T. K. Gaylord, E. N. Glytis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long period fiber grating fabrication with focused CO2 laser pulses,” Electronics Letters, vol. 34, no. 3, pp. 302–303, 1998.CrossRefGoogle Scholar
  12. [12]
    M. Akiyama, K. Nishide, K. Shima, A. Wada, and R. Yamauchi, “A novel long-period fiber grating using periodically releases residual stress of pure-silica core fiber,” in Optical Fiber Communication Conference (OFC), San José, CA, Feb. 22–27, pp. 276–277, 1998.Google Scholar
  13. [13]
    J. Coelho, M. Nespereira, C. Silva, and J. Rebordão, “LOLS research in technology for the development and application of new fiber-based sensors,” Sensors, vol. 12, no. 3, pp. 2654–2666, 2012.CrossRefGoogle Scholar
  14. [14]
    S. T. Oh, W. T. Han, U. C. Paek, and Y. Chung, “Azimuthally symmetric long-period fiber gratings fabricated with CO2 laser,” Microwave Optical Technology Letters, vol. 41, no. 3, pp. 188–190, 2004.CrossRefGoogle Scholar
  15. [15]
    A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 10, no. 2, pp. 300–311, 2004.CrossRefGoogle Scholar
  16. [16]
    A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, et al., “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Applied Physics Letters, vol. 84, no. 1, pp. 19–21, 2004.ADSCrossRefGoogle Scholar
  17. [17]
    S. Yang, M. Matthews, S. Elhadj, V. Draggoo, and S. Bisson, “Thermal transport in CO2 laser irradiated fused silica: in situ measurements and analysis,” Journal of Applied Physics, vol. 106, no. 10, pp. 103106-1–103106-7, 2009.ADSGoogle Scholar
  18. [18]
    J. Coelho, M. Abreu, and F. Carvalho-Rodrigues, “Modelling the spot shape influence on high-speed transmission lap welding of thermoplastics films,” Optics Laser in Engineering, vol. 46, no. 1, pp. 55–61, 2008.ADSCrossRefGoogle Scholar
  19. [19]
    A. Grellier, N. Zayer, and C. Pannell, “Heat transfer modelling in CO2 laser processing of optical fibers,” Optics Communication, vol. 152, no. 4–6, pp. 324–328, 1998.ADSCrossRefGoogle Scholar
  20. [20]
    S. P. Timoshenko and J. N. Goodier, Theory of elasticity, 2nd Edition. New York: McGraw-Hill, pp. 409–410, 1951.Google Scholar
  21. [21]
    M. Lancry, E. Réginier, and B. Poumellec, “Fictive temperature in silica-based glasses and its application to optical fiber manufacturing,” Progress in Material Sciences, vol. 57, no. 1, pp. 63–94, 2012.CrossRefGoogle Scholar
  22. [22]
    Corning® SMF-28 optical fiber product information, Corning Inc.: NY, PI1036, 2002.Google Scholar
  23. [23]
    C. A. Worrel, “Infrared optical constants for CO2 laser waveguide materials,” Journal Materials Science, vol. 21, no. 3, pp. 781–787, 1986.ADSCrossRefGoogle Scholar
  24. [24]
    P. D. Dragic, “The acoustic velocity of Ge-doped silica fibers: a comparison of two models,” International Journal of Applied Glass Science, vol. 1, no. 3, pp. 330–337, 2010.CrossRefGoogle Scholar
  25. [25]
    P. André, A. Rocha, F. Domingues, and M. Facão, “Thermal effects in optical fibers,” in Developments in Heat Transfer. Marco Aurélio dos Santos Bernardes Ed. Ridjeka, Croatia: InTech, pp. 1–20, 2011.Google Scholar
  26. [26]
    D. Nikogosyan, “Multi-photon high-excitation energy approach to fiber grating inscription,” Measurement Science and Technology, vol. 18, no. 1, pp. R1–R29, 2006.ADSCrossRefGoogle Scholar
  27. [27]
    J. Clowes, S. Syngellakis, and M. Zervas, “Pressure sensitivity of side-hole optical fiber sensors,” IEEE Photonics Technology Letters, vol. 10, no. 6, pp. 857–859, 2009.ADSCrossRefGoogle Scholar
  28. [28]
    A. E. Siegman, M. W. Sasnett, and T. F. Johnston, “Choice of clip level for beam width measurements using knife-edge techniques,” IEEE Journal of Quantum Electronics, vol. 27, no. 4, pp. 1098–1104, 1991.ADSCrossRefGoogle Scholar
  29. [29]
    H. Limberger, P. Y. Fonjallaz, R. Salathé, and F. Couché, “Compaction- and photoelastic-induced index changes in fiber Bragg gratings,” Applied Physics Letters, vol. 68, no. 22, pp. 2069–3071, 1996.CrossRefGoogle Scholar
  30. [30]
    X. liu, M. Yan, L. Zhan, S. Luo, Z. Zhang, and Y. Xia, “Controlling of symmetric and asymmetric mode coupling in long-period fiber gratings singe-side induced by long-pulse CO2 laser,” Optical Communication, vol. 284, no. 5, pp. 1232–1237, 2011.ADSCrossRefGoogle Scholar
  31. [31]
    T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters,” Journal of Optics Society America A, vol. 14, no. 8, pp. 1760–1773 1997.ADSCrossRefGoogle Scholar
  32. [32]
    T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters: errata,” Journal of Optics Society America A, vol. 17, no. 11, pp. 2113, 2000.ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

This article is published under license to BioMed Central Ltd. Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • João M. P. Coelho
    • 1
    • 2
  • Marta C. Nespereira
    • 1
    • 2
  • Manuel Abreu
    • 1
    • 2
  • José M. Rebordão
    • 1
    • 2
  1. 1.Faculty of Sciences, Laboratory of Optics, Lasers and SystemsUniversity of LisbonLisbonPortugal
  2. 2.Faculty of Sciences, Institute of Biophysics and Biomedical EngineeringUniversity of LisbonLisbonPortugal

Personalised recommendations