Photonic Sensors

, Volume 2, Issue 4, pp 366–380 | Cite as

Robust fiber-optic sensor networks

  • Rosa Ana Perez-Herrera
  • Montserrat Fernandez-Vallejo
  • Manuel Lopez-Amo
Open Access


The ability to operate despite failure will become increasingly important as the use of optical sensor networks grows, and the amount of sensing information to be handled by a sensor network is increasing, especially for safety and security applications. In this review, the four categories of protection to allow service to be reestablished after a failure (dedicated/shared and line/path) are thoroughly discussed. This paper also presents an overview of the most representative robust fiber-optic sensor systems, discussing their schemes, pros and cons.


Self-healing robust resilience fiber-optic sensor multiplexing fiber Bragg gratings (FBGs) fiber-optic networks 


  1. [1]
    J. M. Lopez-Higuera, Handbook of optical fiber sensing technology, chapter 21, passive fiber optic sensor networks. England: John Wiley & Sons Ltd., 2002, pp. 433–448.Google Scholar
  2. [2]
    S. Yin, P. B. Ruffin, and F. T. S. Yu, Fiber optic sensors, chapter 1, overview of fiber optic sensors. Boca Raton, FL: CRC Press Taylor & Francis Group, 2008, pp. 1–34.Google Scholar
  3. [3]
    S. Diaz, S. Abad, and M. Lopez-Amo, “Fiber-optic sensor active networking with distributed erbium-doped fiber and Raman amplification,” Laser and Photonics Reviews, vol. 2, no. 6, pp. 480–497, 2008.CrossRefGoogle Scholar
  4. [4]
    M. Lopez-Amo and J. M. Lopez-Higuera, Fiber Bragg gratings sensors: recent advancements, industrial applications and market exploitation, chapter 6, multiplexing techniques for FBG sensors. Bussum, The Netherlands: Bentham Science Publishers, 2011.Google Scholar
  5. [5]
    J. L. Santos, O. Frazão, J. M. Baptista, P. A. S. Jorge, I. Dias, F. M. Araújo, et al., “Optical fiber sensing networks,” in SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference Proceedings, IMOC 2009, Belem, Brazil, Nov. 3–6, pp. 290–298, 2009.Google Scholar
  6. [6]
    M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fiber Bragg gratings in structural health monitoring-Present status and applications,” Sensors Actuators A: Physical, vol. 147, no. 1, pp. 150–164, 2008.CrossRefGoogle Scholar
  7. [7]
    H. Li, D. Li, and G. Song, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Engineering Structures, vol. 26, no. 11, pp. 1647–1657, 2004.MathSciNetCrossRefGoogle Scholar
  8. [8]
    A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, et al., “Fiber grating sensors,” Journal Lightwave Technology, vol. 15, no. 8, pp. 1442–1462, 1997.ADSCrossRefGoogle Scholar
  9. [9]
    K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” Journal Lightwave Technology, vol. 15, no. 8, pp. 1263–1276, 1997.ADSCrossRefGoogle Scholar
  10. [10]
    S. Yin, P. B. Ruffin, and F. T. S. Yu, Fiber optic sensors, chapter 10, applications of fiber optic sensors. Boca Raton, FL: CRC Press Taylor & Francis Group, 2008, pp. 397–434.Google Scholar
  11. [11]
    M. Fernandez-Vallejo, S. Rota-Rodrigo, and M. Lopez-Amo, “Remote (250 km) fiber Bragg grating multiplexing system,” Sensors, vol. 11, no. 9, pp. 8711–8720, 2011.CrossRefGoogle Scholar
  12. [12]
    D. Leandro, A. Ullan, M. Lopez-Amo, J. M. Lopez-Higuera, and A. Loayssa, “Remote (155 km) fiber Bragg grating interrogation technique combining Raman, Brillouin and erbium gain in a fiber laser,” IEEE Photonic Technology Letters, vol. 23, no. 10, pp. 621–623, 2011.ADSCrossRefGoogle Scholar
  13. [13]
    A. Zornoza, R. A. Pérez-Herrera, C. Elosúa, S. Diaz, C. Bariain, A. Loayssa, et al., “Long-range hybrid network with point and distributed Brillouin sensors using Raman amplification,” Optics Express, vol. 18, no. 9, pp. 9531–9541, 2010.ADSCrossRefGoogle Scholar
  14. [14]
    T. Saitoh, K. Nakamura, Y. Takahashi, H. Iida, Y. Iki, and K. Miyagi, “Ultra-long-distance (230 km) FBG sensor system,” in Proc. SPIE, vol. 7004, pp. 70046C-1–70046C-4, 2008.CrossRefGoogle Scholar
  15. [15]
    S. Diaz, G. Lasheras, and M. Lopez-Amo, “WDM bi-directional transmission over 35 km amplified fiber-optic bus network using Raman amplification for optical sensors,” Optics Express, vol. 13, no. 24, pp. 9666–9671, 2005.ADSCrossRefGoogle Scholar
  16. [16]
    M. J. F. Digonnet, B. J. Vakoc, C. W. Hodgson, and G. S. Kino, “Acoustic fiber sensor arrays,” in Proc. SPIE (The International Society for Optical Engineering), vol. 5502, pp. 39–50, 2004.ADSGoogle Scholar
  17. [17]
    R. T. Chen, M. R. Wang, and T. Jannson, “Multiple-mode reconfigurable electro-optic switching network for optical fiber sensor array,” in Proc. SPIE (The International Society for Optical Engineering), San Jose, CA, USA, Sep. 17, vol. 1374, pp. 223–236, 1990.ADSGoogle Scholar
  18. [18]
    P. Peng and S. Chi, “A reliable architecture for FBG sensor systems,” Microwave Optics Technology Letters, vol. 39, no. 6, pp. 479–482, 2003.CrossRefGoogle Scholar
  19. [19]
    E. L. Izquierdo, P. Urquhart, and M. López-Amo, “Optical fiber bus protection architecture for the networking of sensors,” in 2007 IEEE International Symposium on Intelligent Signal Processing, WISP, Alcala de Henares, Oct. 3–5, pp. 1–6, 2007.Google Scholar
  20. [20]
    P. Urquhart, H. Palezi, and P. Jardin, “Optical fiber bus protection network to multiplex sensors: Self-diagnostic operation,” Journal of Lightwave Technology, vol. 29, no. 10, pp. 1427–1436, 2011.ADSCrossRefGoogle Scholar
  21. [21]
    C. W. Hodgson, M. J. F. Digonnet, and H. J. Shaw, “Large-scale interferometric fiber sensor arrays incorporating multiple optical switches,” Optical Fiber Technology, vol. 4, no. 3, pp. 316–327, 1998.ADSCrossRefGoogle Scholar
  22. [22]
    E. L. Izquierdo, P. Urquhart, and M. Lopez-Amo, “Protection architectures for WDM optical fiber bus sensor arrays,” Journal of Engineering, vol. 1, no. 2, pp. 1–18, 2007.Google Scholar
  23. [23]
    S. Ramamurthy, L. Sahasrabuddhe, and B. Mukherjee, “Survivable WDM mesh networks,” Journal of Lightwave Technology, vol. 21, no. 4, pp. 870–883, 2003.ADSCrossRefGoogle Scholar
  24. [24]
    O. G. López, K. Schires, P. Urquhart, N. Gueyne, and B. Duhamel, “Optical fiber bus protection network to multiplex sensors: amplification by remotely pumped EDFAs,” IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 9, pp. 2945–2951, 2009.CrossRefGoogle Scholar
  25. [25]
    D. Y. Zhou and S. Subramaniam, “Survivability in optical networks,” IEEE Network, vol. 14, no. 6, pp. 16–23, 2000.CrossRefGoogle Scholar
  26. [26]
    A. A. M. Saleh and J. M. Simmons, “Architectural principles of optical regional and metropolitan access networks,” Journal of Lightwave Technology, vol. 17, no. 12, pp. 2431–2448, 1999.ADSCrossRefGoogle Scholar
  27. [27]
    X. Sun and P. Wei, “Using new models to enhance optical-fiber-sensor networks,” SPIE Newsroom, Feb. 8, 2007, DOI: 10.1117/2.1200701.0522.Google Scholar
  28. [28]
    P. Peng, W. Lin, and S. Chi, “A self-healing architecture for fiber Bragg grating sensor network,” in Proceedings of IEEE Sensors, vol. 1, pp. 60–63, 2004.CrossRefGoogle Scholar
  29. [29]
    C. Yeh, C. Chow, P. Wu, and F. Tseng, “A simple fiber Bragg grating-based sensor network architecture with self-protecting and monitoring functions,” Sensors, vol. 11, no. 2, pp. 1375–1382, 2011.CrossRefGoogle Scholar
  30. [30]
    S. Kuo, P. Peng, J. Sun, and M. Kao, “A delta-star-based multipoint fiber Bragg grating sensor network,” IEEE Sensors Journal, vol. 11, no. 4, pp. 875–881, 2011.CrossRefGoogle Scholar
  31. [31]
    P. Peng, J. Wang, and K. Huang, “Reliable fiber sensor system with star-ring-bus architecture,” Sensors, vol. 10, no. 5, pp. 4194–4205, 2010.CrossRefGoogle Scholar
  32. [32]
    N. Miki and K. Kumozaki, Passive optical networks: principles and practice, chapter 5, ranging and dynamic bandwidth allocation. London, UK: Academic Press, Elsevier, 2007.Google Scholar
  33. [33]
    P. Peng, H. Tseng, and S. Chi, “Self-healing fiber grating sensor system using tunable multiport fiber laser scheme for intensity and wavelength division multiplexing,” Electronics Letters, vol. 38, no. 24, pp. 1510–1512, 2002.CrossRefGoogle Scholar
  34. [34]
    P. Peng, H. Tseng, and S. Chi, “A hybrid star-ring architecture for fiber Bragg grating sensor system,” IEEE Photonics Technology Letters, vol. 15, no. 9, pp. 1270–1272, 2003.ADSCrossRefGoogle Scholar
  35. [35]
    P. Peng, H. Tseng, and S. Chi, “A novel fiber-laser-based sensor network with self-healing function,” IEEE Photonics Technology Letters, vol. 15, no. 2, pp. 275–277, 2003.ADSCrossRefGoogle Scholar
  36. [36]
    R. A. Perez-Herrera, S. Diaz, P. Urquhart, and M. Lopez-Amo, “A resilient Raman amplified double ring network for multiplexing fiber Bragg grating sensors,” in Proc. SPIE (The International Society for Optical Engineering), vol. 6619, pp. 66193E, 2007.ADSGoogle Scholar
  37. [37]
    C. H. Wang, C. H. Yeh, F. Y. Shih, C. W. Chow, K. C. Hsu, Y. Lai, et al., “Self-protection multi-ring-architecture fiber sensing system,” Advanced Materials Research, vol. 47–50, pp. 793–796, 2008.CrossRefGoogle Scholar
  38. [38]
    M. Fernandez-Vallejo, R. A. Perez-Herrera, C. Elosua, S. Diaz, P. Urquhart, C. Bariáin, et al., “Resilient amplified double-ring optical networks to multiplex optical fiber sensors,” Journal of Lightwave Technology, vol. 27, no. 10, pp. 1301–1306, 2009.ADSCrossRefGoogle Scholar
  39. [39]
    C. Yeh, C. Chow, C. Wang, F. Shih, Y. Wu, and S. Chi, “A simple self-restored fiber Bragg grating (FBG)-based passive sensing ring network,” Measurement Science and Technology, vol. 20, no. 4, 043001-1–043001-5, 2009.ADSCrossRefGoogle Scholar
  40. [40]
    H. Zhang, S. Wang, G. Wen, W. Ye, X. Chen, D. Jia, et al., “Large-scale self-healing architectures for fiber Bragg grating sensor network,” in 9th International Conference on Optical Communications and Networks, ICOCN 2010, Nanjing, China, Oct. 24–27, pp. 99–102, 2010.Google Scholar
  41. [41]
    P. Peng and K. Huang, “Fiber Bragg grating sensor system with two-level ring architecture,” IEEE Sensors Journal, vol. 9, no. 4, pp. 309–313, 2009.CrossRefGoogle Scholar
  42. [42]
    M. Fernandez-Vallejo, S. Díaz, R. A. Perez-Herrera, D. Passaro, S. Selleri, M. A. Quintela, et al., “Resilient long-distance sensor system using a multiwavelength Raman laser,” Measurement Science and Technology, vol. 21, no. 9, pp. 094017-1–094017-5, 2010.ADSCrossRefGoogle Scholar
  43. [43]
    C. Y. Wu, K. M. Feng, P. C. Peng, and C. Y. Lin, “Three-dimensional mesh-based multipoint sensing system with self-healing functionality,” IEEE Photonics Technology Letters, vol. 22, no. 8, pp. 565–567, 2010.ADSCrossRefGoogle Scholar
  44. [44]
    C. Wu, F. Kuo, K. Feng, and P. Peng, “Ring topology based mesh sensing system with self-healing function using FBGs and AWG,” in 2010 Conference on Optical Fiber Communication, Collocated National Fiber Optic Engineers Conference, OFC/NFOEC 2010, San Diego, CA, Mar. 21–25, pp. 1–20, 2010.Google Scholar
  45. [45]
    P. Peng, J. Chen, and J. Sun, “Novel ring protection architecture for fiber sensor system,” Japanese Journal of Applied Physics, vol. 50, no. 8, pp. 082501-1–082501-4, 2011.ADSCrossRefGoogle Scholar
  46. [46]
    P. C. Peng, C. H. Chang, H. H. Lu, Y. T. Lin, J. W. Sun, and C. H. Jiang, “Novel optical add-drop multiplexer for wavelength-division-multiplexing networks,” Optics Communications, vol. 285, no. 13–14, 15, pp. 3093–3099, 2012.ADSCrossRefGoogle Scholar
  47. [47]
    D. N. Tibet-Shaban and N. J. Zhelezarski, “Design of a resilient optical fiber network for the multiplexing of sensors,” M. S. thesis, Department of Electrical and Electronic Engineering, Public University of Navarra, Spain, 2009.Google Scholar
  48. [48]
    P. Peng and S. Chi, “A reliable architecture for FBG sensor systems,” Microwave and Optical Technology Letters, vol. 39, no. 6, 479–482, 2003.CrossRefGoogle Scholar
  49. [49]
    T. H. Wu, Fiber network service survivability. Norwood, MA: Artech House, 1992.Google Scholar
  50. [50]
    J. M. Senior, S. E. Moss, and S. D. Cusworth, “Multiplexing techniques for noninterferometric optical point-sensor networks: a review,” Fiber and Integrated Optics, vol. 17, no. 1, pp. 3–20, 1998.CrossRefGoogle Scholar
  51. [51]
    K. T. V. Grattan and B. T. Meggitt, Optical fiber sensor technology. The Netherlands: Kluwer Academic Publishers, 2000.CrossRefGoogle Scholar
  52. [52]
    V. Montoya, M. Lopez-Amo, and S. Abad, “Improved double-fiber-bus with distributed optical amplification for wavelength-division multiplexing of photonic sensors,” Photonics Technology Letters, vol. 12, no. 9, pp. 1270–1272, 2000.ADSCrossRefGoogle Scholar
  53. [53]
    R. Hernandez-Lorenzo, M. Lopez-Amo, and P. Urquhart, “Single and double distributed optical amplifier fiber bus networks with wavelength division multiplexing for photonic sensors,” Journal of Lightwave Technology, vol. 16, no. 4, pp. 485–489, 1998.ADSCrossRefGoogle Scholar
  54. [54]
    M. Schluter and P. Urquhart, “Optical fiber bus protection network to multiplex sensors: dedicated line and dedicated path operation,” Journal of Lightwave Technology, vol. 29, no. 15, pp. 2204–2215, 2001.ADSCrossRefGoogle Scholar
  55. [55]
    M. Fernandez-Vallejo and M. Lopez-Amo, “Optical fiber networks for remote fiber optic sensors,” Sensors, vol. 12, no. 4, pp. 3929–3951, 2012.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

This article is published under license to BioMed Central Ltd. Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Rosa Ana Perez-Herrera
    • 1
  • Montserrat Fernandez-Vallejo
    • 1
  • Manuel Lopez-Amo
    • 1
  1. 1.Department of Electric and Electronic EngineeringPublic University of NavarraPamplonaSpain

Personalised recommendations