Photonic Sensors

, Volume 2, Issue 3, pp 259–270 | Cite as

Sensitivity and performance of cavity optomechanical field sensors

  • Stefan Forstner
  • Joachim Knittel
  • Eoin Sheridan
  • Jon D. Swaim
  • Halina Rubinsztein-Dunlop
  • Warwick P. Bowen
Open Access


This article describes in detail a technique for modeling cavity optomechanical field sensors. A magnetic or electric field induces a spatially varying stress across the sensor, which then induces a force on mechanical eigenmodes of the system. The force on each oscillator can then be determined from an overlap integral between magnetostrictive stress and the corresponding eigenmode, with the optomechanical coupling strength determining the ultimate resolution with which this force can be detected. Furthermore, an optomechanical magnetic field sensor is compared to other magnetic field sensors in terms of sensitivity and potential for miniaturization. It is shown that an optomechanical sensor can potentially outperform state-of-the-art magnetometers of similar size, in particular other sensors based on a magnetostrictive mechanism.


Cavity optomechanics magnetic field sensors magnetostriction integrated microcavity 


  1. [1]
    A. Edelstein, “Advances in magnetometry,” Journal of Physics: Condensed Matter, vol. 19, no. 16, pp. 165217, 2007.ADSGoogle Scholar
  2. [2]
    M. Diaz-Michelena, “Small magnetic sensors for space applications,” Sensors, vol. 9, no. 4, pp. 2271–2288, 2009.CrossRefGoogle Scholar
  3. [3]
    P. Ripka and M. Janosek, “Advances in magnetic field sensors,” IEEE Sensors Journal, vol. 10, no. 6, pp. 1108–1116, 2010.CrossRefGoogle Scholar
  4. [4]
    F. Bucholtz, D. M. Dagenais, and K. P. Koo, “High-frequency fibre-optic magnetometer with 70 fT/Open image in new window resolution,” Electronics Letters, vol. 25, no. 25, pp. 1719–1721, 1989.CrossRefGoogle Scholar
  5. [5]
    H. J. Mamin, M. Poggio, C. L. Degen, and D. Rugar, “Nuclear magnetic resonance imaging with 90-nm resolution,” Nature Nanotechnology, vol. 2, no. 5, pp. 301–306, 2007.ADSCrossRefGoogle Scholar
  6. [6]
    V. Pizzella, S. D. Penna, C. D. Gratta, and G. L. Romani, “SQUID systems for biomagnetic imaging,” Superconductor Science and Technology, vol. 14, no. 7, pp. R79–R114, 2001.ADSCrossRefGoogle Scholar
  7. [7]
    A. M. Chang, H. D. Hallen, L. Harriott, H. F. Hess, H. L. Kao, J. Kwo, et al., “Scanning Hall probe microscopy,” Applied Physics Letters, vol. 61, no. 16, pp. 1974–1976, 1992.ADSCrossRefGoogle Scholar
  8. [8]
    H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Applied Physics Letters, vol. 97, no. 15, pp. 151110-1–151110-3, 2010.ADSCrossRefGoogle Scholar
  9. [9]
    J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, et al., “High-sensitivity diamond magnetometer with nanoscale resolution,” Nature Physics, vol. 4, no. 10, pp. 810–816, 2008.ADSCrossRefGoogle Scholar
  10. [10]
    M. Vengalattore, J. M. Higbie, S. R. Leslie, J. Guzman, L. E. Sadler, and D. M. Stamper-Kurn, “High-resolution magnetometry with a spinor Bose-Einstein condensate,” Physical Review Letters, vol. 98, no. 20, pp. 200801, 2007.ADSCrossRefGoogle Scholar
  11. [11]
    M. V. Romalis and H. B. Dang, “Atomic magnetometers for materials characterization,” Materials Today, vol. 14, no. 6, pp. 258–262, 2011.CrossRefGoogle Scholar
  12. [12]
    S. Xu, V. V. Yashchuk, M. H. Donaldson, S. M. Rochester, D. Budker, and A. Pines, “Magnetic resonance imaging with an optical atomic magnetometer,” in Proceedings of the National Academy of Sciences, vol. 103, no. 34, pp. 12668–12671, 2006.ADSCrossRefGoogle Scholar
  13. [13]
    M. P. Ledbetter, T. Theis, J. W. Blanchard, H. Ring, P. Ganssle, S. Appelt, et al., “Near-zero-field nuclear magnetic resonance,” Physical Review Letters, vol. 107, no. 10, pp. 107601, 2011.ADSCrossRefGoogle Scholar
  14. [14]
    J. Jang, R. Budakian, and Y. Maeno, “Phase-locked cantilever magnetometry,” Applied Physics Letters, vol. 98, no. 13, pp. 132510, 2011.ADSCrossRefGoogle Scholar
  15. [15]
    L. S. Bouchard, V. M. Acosta, E. Bauch, and D. Budker, “Detection of the Meissner effect with a diamond magnetometer,” New Journal of Physics, vol. 13, pp. 025017, 2011.ADSCrossRefGoogle Scholar
  16. [16]
    D. Budker and M. Romalis, “Optical magnetometry,” Nature Physics, vol. 3, no. 4, pp. 227–234, 2007.ADSCrossRefGoogle Scholar
  17. [17]
    M. Hämäläinen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography — theory, instrumentation, and applications to noninvasive studies of the working human brain,” Reviews of Modern Physics, vol. 65, no. 2, pp. 413–497, 1993.ADSCrossRefGoogle Scholar
  18. [18]
    S. Palva and J. M. Palva, “New vistas for alpha-frequency band oscillations,” Trends in Neurosciences, vol. 30, no. 4, pp. 150–158, 2007.CrossRefGoogle Scholar
  19. [19]
    S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, et al., “Cavity optomechanical magnetometer,” Physics Review Letters, vol. 108, no. 12, pp. 120801, 2012.ADSCrossRefGoogle Scholar
  20. [20]
    S. Forstner, J. Knittel, H. Rubinsztein-Dunlop, and W. P. Bowen, “Model of a microtoroidal magnetometer,” in Proc. SPIE, vol. 8439, pp. 84390U, 2012.ADSCrossRefGoogle Scholar
  21. [21]
    J. Knittel, S. Forstner, J. Swaim, H. Rubinsztein-Dunlop, and W. P. Bowen, “Sensitivity of cavity optomechanical field sensors,” in Proc. SPIE, vol. 8351, pp. 83510H, 2012.ADSCrossRefGoogle Scholar
  22. [22]
    T. Corbitt and N. Mavalvala, “Quantum noise in gravitational-wave interferometers,” Journal of Optics B: Quantum and Semiclassical Optics, vol. 6, no. 8, pp. S675–S683, 2004.ADSCrossRefGoogle Scholar
  23. [23]
    V. B. Braginsky, Measurement of weak forces in physics experiments. Chicago: University of Chicago Press. 1977.Google Scholar
  24. [24]
    T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Optics Express, vol. 15, no. 25, pp. 17172–17205, 2007.ADSCrossRefGoogle Scholar
  25. [25]
    T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science, vol. 321, no. 5893, pp. 1172–1176, 2008.ADSCrossRefGoogle Scholar
  26. [26]
    J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, et al., “Sideband cooling of micromechanical motion to the quantum ground state,” Nature, vol. 475, no. 7356, pp. 359–363, 2011.Google Scholar
  27. [27]
    J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groeblacher, et al., “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature, vol. 478, no. 7367, pp. 89–92, 2011.ADSCrossRefGoogle Scholar
  28. [28]
    A. Schliesser, G. Anetsberger, R. Riviere, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New Journal of Physics, vol. 10, no. 9, pp. 095015, 2008.ADSCrossRefGoogle Scholar
  29. [29]
    C. A. Regal, J. D. Teufel, and K. W. Lehnert, “Measuring nanomechanical motion with a microwave cavity interferometer,” Nature Physics, vol. 4, no. 7, pp. 555–560, 2008.CrossRefGoogle Scholar
  30. [30]
    A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Physical Review Letters vol. 108, no. 3, pp. 033602, 2012.ADSCrossRefGoogle Scholar
  31. [31]
    J. Liu, K. Usami, A. Naesby, T. Bagci, E. S. Polzik, P. Lodahl, et al., “High-Q optomechanical GaAs nanomembranes,” Applied Physics Letters, vol. 99, no. 24, pp. 243102, 2011.ADSCrossRefGoogle Scholar
  32. [32]
    H. Cai and A. W. Poon, “Optical manipulation of microparticles using whispering-gallery modes in a silicon nitride microdisk resonator,” Optics Letters, vol. 36, no. 21, pp. 4257–4259, 2011.ADSCrossRefGoogle Scholar
  33. [33]
    C. P. Dietrich, M. Lange, C. Sturm, R. Schmidt-Grund, and M. Grundmann, “One- and two-dimensional cavity modes in ZnO microwires,” New Journal of Physics, vol. 13, no. 10, pp. 103021–103029, 2011.ADSCrossRefGoogle Scholar
  34. [34]
    D. Kleckner, B. Pepper, E. Jeffrey, P. Sonin, S. M. Thon, and D. Bouwmeester, “Optomechanical trampoline resonators,” Optics Express, vol. 19, no. 20, pp. 19708–19716, 2011.ADSCrossRefGoogle Scholar
  35. [35]
    A. G. Kuhn, M. Bahriz, O. Ducloux, C. Chartier, O. L. Traon, T. Briant, et al., “A micropillar for cavity optomechanics,” Applied Physics Letters, vol. 99, no. 12, pp. 121103, 2011.ADSCrossRefGoogle Scholar
  36. [36]
    I. Wilson-Rae, C. Galland, W. Zwerger, and A. Imamoglu, “Nano-optomechanics with localized carbon-nanotube excitons,” arXiv: 0911.1330v1 [cond-mat.mes-hall], 2009.Google Scholar
  37. [37]
    B. P. Abbott, R. Abbott, R. Adhikari, P. Ajith, B. Allen, G Allen, et al., “LIGO: the laser interferometer gravitational-wave observatory,” Reports on Progress in Physics, vol. 72, no. 7, pp. 076901, 2009.ADSCrossRefGoogle Scholar
  38. [38]
    L. D. Landau and E. M. Lifshitz, Theory of elasticity (Course of Theoretical Physics ), 2nd edition, vol. 7. Oxford: Pergamon Press, 1970.Google Scholar
  39. [39]
    D. T. Gillespie, “The mathematics of Brownian motion and Johnson noise,” American Journal of Physics, vol. 64, no. 3, pp. 225–240, 1996.ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    A. Schliesser, “Cavity optomechanics and optical frequency comb generation with silica whispering-gallery-mode microresonators,” Ph.D. dissertation, Physik. Department, Ludwig-Maximilians-Universität, 2009.Google Scholar
  41. [41]
    V. B. Braginsky, S. E. Strigin, and V. P. Vyatchanin, “Parametric oscillatory instability in Fabry-Perot interferometer,” Physics Letters A, vol. 287, no. 5–6, pp. 331–338, 2001.ADSCrossRefGoogle Scholar
  42. [42]
    M. Pinard, Y. Hadjar, and A. Heidmann, “Effective mass in quantum effects of radiation pressure,” The European Physical Journal D — Atomic, Molecular, Optical and Plasma Physics, vol. 7, no. 1, pp. 107–116, 1999.ADSGoogle Scholar
  43. [43]
    V. Giovannetti and D. Vitali, “Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion,” Physical Review A, vol. 63, no. 2, pp. 023812, 2001.ADSCrossRefGoogle Scholar
  44. [44]
    V. B. Braginsky and F. Y. Khalili, Quantum Measurement. Cambridge: Cambridge University Press, 1992.CrossRefGoogle Scholar
  45. [45]
    D. Maser, S. Pandey, H. Ring, M. P. Ledbetter, S. Knappe, J. Kitching, et al., “Note: detection of a single cobalt microparticle with a microfabricated atomic magnetometer,” Review of Scientific Instruments, vol. 82, no. 8, pp. 086112, 2011.ADSCrossRefGoogle Scholar
  46. [46]
    J. R. Kirtley, M. B. Ketchen, K. G. Stawiasz, J. Z. Sun, W. J. Gallagher, S. H. Blanton, et al., “High-resolution scanning squid microscope,” Applied Physics Letters, vol. 66, no. 9, pp. 1138–1140, 1995.ADSCrossRefGoogle Scholar
  47. [47]
    M. I. Faley, U. Poppe, K. Urban, D. N. Paulson, and R. L. Fagaly, “A new generation of the HTS multilayer dc-squid magnetometers and gradiometers,” Journal of Physics: Conference Series, vol. 43, no. 1, pp. 1199–1202, 2006.ADSGoogle Scholar
  48. [48]
    F. Baudenbacher, L. E. Fong, J. R. Holzer, and M. Radparvar, “Monolithic low-transition temperature superconducting magnetometers for high resolution imaging magnetic fields of room temperature samples,” Applied Physics Letters, vol. 82, no. 20, pp. 3487–3489, 2003.ADSCrossRefGoogle Scholar
  49. [49]
    A. Sandhu, A. Okamoto, I. Shibasaki, and A. Oral, “Nano and micro Hall-effect sensors for room-temperature scanning Hall probe microscopy,” Microelectronic Engineering, vol. 73-74, pp. 524–528, 2004.CrossRefGoogle Scholar
  50. [50]
    A. Sandhu, K. Kurosawa, M. Dede, and A. Oral, “50 nm Hall sensors for room temperature scanning Hall probe microscopy,” Japanese Journal of Applied Physics, vol. 43, no. 2, pp. 777–778, 2004.ADSCrossRefGoogle Scholar
  51. [51]
    J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, et al., “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature, vol. 455, no. 7213, pp. 644–647, 2008.ADSCrossRefGoogle Scholar
  52. [52]
    G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, et al., “Ultralong spin coherence time in isotopically engineered diamond,” Nature Materials, vol. 8, no. 5, pp. 383–387, 2009.ADSCrossRefGoogle Scholar
  53. [53]
    S. X. Dong, J. F. Li, and D. Viehland, “Ultrahigh magnetic field sensitivity in laminates of terfenol-D and Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals,” Applied Physics Letters, vol. 83, no. 11, pp. 2265–2267, 2003.Google Scholar
  54. [54]
    R. Osiander, S. A. Ecelberger, R. B. Givens, D. K. Wickenden, J. C. Murphy, and T. J. Kistenmacher, “A microelectromechanical-based magnetostrictive magnetometer,” Applied Physics Letters, vol. 69, no. 19, pp. 2930–2931, 1996.ADSCrossRefGoogle Scholar
  55. [55]
    K. Vervaeke, E. Simoen, G. Borghs, and V. V. Moshchalkov, “Size dependence of microscopic Hall sensor detection limits,” Review of Scientific Instruments, vol. 80, no. 7, pp. 074701-1–074701-7, 2009.ADSCrossRefGoogle Scholar
  56. [56]
    M. S. Grinolds, P. Maletinsky, S. Hong, M. D. Lukin, R. L. Walsworth, and A. Yacoby, “Quantum control of proximal spins using nanoscale magnetic resonance imaging,” Nature Physics, vol. 7, no. 9, pp. 687–692, 2011.ADSCrossRefGoogle Scholar
  57. [57]
    L. M. Pham, D. L. Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, et al., “Magnetic field imaging with nitrogen-vacancy ensembles,” New Journal of Physics, vol. 13, pp. 045021, no. 4, 2011.CrossRefGoogle Scholar
  58. [58]
    R. S. Schoenfeld and W. Harneit, “Real time magnetic field sensing and imaging using a single spin in diamond,” Physical Review Letters, vol. 106, no. 3, pp. 030802, 2011.ADSCrossRefGoogle Scholar
  59. [59]
    J. C. Allred, R. N. Lyman, W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Physical Review Letters, vol. 89, no. 13, pp. 130801, 2002.ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Stefan Forstner
    • 1
  • Joachim Knittel
    • 1
  • Eoin Sheridan
    • 1
  • Jon D. Swaim
    • 1
  • Halina Rubinsztein-Dunlop
    • 1
  • Warwick P. Bowen
    • 1
  1. 1.School of Mathematics and PhysicsUniversity of QueenslandSt LuciaAustralia

Personalised recommendations