Photonic Sensors

, Volume 1, Issue 4, pp 323–350 | Cite as

Staying coherent after kent: From optical communications to biomedical optics

Open Access
Review

Abstract

In this paper, an overview of author’s research is presented, commencing at the University of Kent under Prof. David A. Jackson. Early research in short optical pulses and fiber-optic delay-line digital correlators led to optical communications research in code-division multiple access networking. This research was based on broadband incoherent light, and this theme continued with research into spectrum-sliced wavelength-division multiplexing. In shifting from photonics research to biomedical optics and biophotonics in the late 1990s, the emphasis on exploiting broadband light continued with research in optical coherence tomography, amongst other topics. In addition to the research outcomes, how these outcomes were attained is described, including mention of the exceptional contributions of many of my colleagues.

Keywords

Digital correlators optical code-division multiple access wavelength-division multiplexing biomedical optics optical coherence tomography 

References

  1. [1]
    T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE Journal of Quantum Electronics, vol. 18, no. 4, pp. 626–665, 1982.Google Scholar
  2. [2]
    D. D. Sampson and M. C. Elias, “Semiconductor laser stabilization using short external cavities,” in Proc. 12th Australian Conference on Optical Fiber Technology, Sydney, Australia, December 6–9, pp. 151–154, 1987.Google Scholar
  3. [3]
    D. T. Cassidy, “Trace gas-detection using 1.3-μm InGaAsP diode-laser transmitter modules,” Applied Optics, vol. 27, no. 3, pp. 610–614, 1988.Google Scholar
  4. [4]
    G. Stewart, W. Johnstone, J. R. P. Bain, K. Ruxton, and K. Duffin, “Recovery of absolute gas absorption line shapes using tunable diode laser spectroscopy with wavelength modulation — Part I: theoretical analysis,” Journal of Lightwave Technology, vol. 29, no. 6, pp. 811–821, 2011.Google Scholar
  5. [5]
    J. H. Van Vleck and D. Middleton, “Spectrum of clipped noise,” in Proceedings of the Institute of Electrical and Electronics Engineers, vol. 54, pp. 2–19, 1966.Google Scholar
  6. [6]
    R. H. Brown and R. Q. Twiss, “Correlation between photons in 2 coherent beams of light,” Nature, vol. 177, no. 4497, pp. 27–29, 1956.Google Scholar
  7. [7]
    H. Z. Cummins and E. R. Pike, Eds., Photon Correlation and Light Beating Spectroscopy. Nato Advanced Study Institute, New York: Plenum, 1973.Google Scholar
  8. [8]
    A. R. Thompson, J. M. Moran, and G. W. Swenson, Interferometry and Synthesis in Radio Astronomy. New York: Wiley, 1986.Google Scholar
  9. [9]
    D. A. Jackson and J. D. C. Jones, “Proposed topologies for a fiber-optic-based 1-GHz clipped digital correlator,” Optics Letters, vol. 11, no. 12, pp. 824–826, 1986.Google Scholar
  10. [10]
    K. P. Jackson and H. J. Shaw, “Fiber-optic delay line processors,” in Optical Signal Processing, J. L. Horner Ed., New York: Academic Press, 1987.Google Scholar
  11. [11]
    B. Moslehi, J. W. Goodman, M. Tur, and H. J. Shaw, “Fiber-optic lattice signal-processing,” in Proceedings of the IEEE, vol. 72, pp. 909–930, 1984.Google Scholar
  12. [12]
    D. D. Sampson and D. A. Jackson, “High-speed optical pulse generation using single-mode optical fiber networks,” Review of Scientific Instruments, vol. 62, no. 1, pp. 36–41, 1991.Google Scholar
  13. [13]
    J. L. Hullett and T. V. Muoi, “A feedback receive amplifier for optical transmission-systems,” IEEE Transactions on Communications, vol. 24, no. 10, pp. 1180–1185, 1976.Google Scholar
  14. [14]
    D. D. Sampson and D. A. Jackson, “Experimental realization of a fiber-optic-based multichannel digital correlator,” Optics Letters, vol. 16, no. 23, pp. 1899–1901, 1991.Google Scholar
  15. [15]
    D. D. Sampson, W. T. Dove, and D. A. Jackson, “High-bandwidth, optical-fiber delay-line multichannel digital correlator,” Applied Optics, vol. 32, no. 21, pp. 3905–3916, 1993.Google Scholar
  16. [16]
    D. D. Sampson and D. A. Jackson, “Coherent optical fiber communications system using all-optical correlation processing,” Optics Letters, vol. 15, no. 10, pp. 585–587, 1990.Google Scholar
  17. [17]
    M. E. Marhic and Y. L. Chang, “Pulse coding and coherent decoding in fiber-optic ladder networks,” Electronics Letters, vol. 25, no. 22, pp. 1535–1536, 1989.Google Scholar
  18. [18]
    Y. L. Chang and M. E. Marhic, “Fiberoptic ladder networks for inverse decoding coherent CDMA,” Journal of Lightwave Technology, vol. 10, no. 12, pp. 1952–1962, 1992.Google Scholar
  19. [19]
    C. Delisle and P. Cielo, “Application of spectrum modulation to data transfer,” Canadian Journal of Physics, vol. 53, no. 11, pp. 1047–1053, 1975.Google Scholar
  20. [20]
    J. P. Goedgebuer, H. Porte, and A. Hamel, “Electrooptic modulation of multilongitudinal mode laser-diodes — demonstration at 850 nm with simultaneous data-transmission by coherence multiplexing,” IEEE Journal of Quantum Electronics, vol. 23, no. 7, pp. 1135–1144, 1987.Google Scholar
  21. [21]
    S. A. Al-Chalabi, B. Culshaw, and D. E. N. Davies, “Partially coherent sources in interferometric sensors,” in Proc. 1st International Conference on Optical Fiber Sensors (IEE), London, United Kingdom, April 26–28, pp. 132–135, 1983.Google Scholar
  22. [22]
    J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, and H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” Journal of Lightwave Technology, vol. 3, no.5, pp. 1062–1072, 1985.Google Scholar
  23. [23]
    J. P. Goedgebuer and A. Hamel, “Coherence multiplexing using a parallel array of electrooptic modulators and multimode semiconductor-lasers,” IEEE Journal of Quantum Electronics, vol. 23, no. 12, pp. 2224–2237, 1987.Google Scholar
  24. [24]
    D. D. Sampson, R. A. Griffin, and D. A. Jackson, “Photonic CDMA by coherent matched filtering using time-addressed coding in optical ladder networks,” Journal of Lightwave Technology, vol. 12, no. 11, pp. 2001–2010, 1994.Google Scholar
  25. [25]
    D. D. Sampson, M. Calleja, and R. A. Griffin, “Crosstalk performance of coherent time-addressed photonic CDMA networks,” IEEE Transactions on Communications, vol. 46, no. 3, pp. 338–348, 1998.Google Scholar
  26. [26]
    R. A. Griffin, D. D. Sampson, and D. A. Jackson, “Demonstration of data-transmission using coherent correlation to reconstruct a coded pulse sequence,” IEEE Photonics Technology Letters, vol. 4, no. 5, pp. 513–515, 1992.Google Scholar
  27. [27]
    R. A. Griffin, D. D. Sampson, and D. A. Jackson, “Optical-phase coding for code-division multiple access networks,” IEEE Photonics Technology Letters, vol. 4, no. 12, pp. 1401–1404, 1992.Google Scholar
  28. [28]
    J. A. Salehi, A. M. Weiner, and J. P. Heritage, “Coherent ultrashort light-pulse code-division multiple access communication systems,” Journal of Lightwave Technology, vol. 8, no. 3, pp. 478–491, 1990.Google Scholar
  29. [29]
    A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High-resolution femtosecond pulse shaping,” Journal of the Optical Society of America B-Optical Physics, vol. 5, no. 8, pp. 1563–1572, 1988.Google Scholar
  30. [30]
    R. A. Griffin, D. D. Sampson, and D. A. Jackson, “Modification of optical coherence using spectral phase coding for use in photonic code-division multiple-access systems,” Electronics Letters, vol. 29, no. 25, pp. 2214–2216, 1993.Google Scholar
  31. [31]
    R. A. Griffin, D. D. Sampson, and D. A. Jackson, “Coherence coding for photonic code-division multiple-access networks,” Journal of Lightwave Technology, vol. 13, no. 9, pp. 1826–1837, 1995.Google Scholar
  32. [32]
    J. W. Goodman, Statistical Optics. New York: John Wiley & Sons, 2000.Google Scholar
  33. [33]
    P. Healey, “Dimensioning an optical-fiber spread-spectrum multiple-access communication system,” Optics Letters, vol. 12, no. 6, pp. 425–427, 1987.Google Scholar
  34. [34]
    K. W. Chu and F. M. Dickey, “Optical coherence multiplexing for interprocessor communications,” Optical Engineering, vol. 30, no. 3, pp. 337–344, 1991.Google Scholar
  35. [35]
    R. H. Wentworth, “Theoretical noise performance of coherence-multiplexed interferometric sensors,” Journal of Lightwave Technology, vol. 7, no. 6, pp. 941–956, 1989.Google Scholar
  36. [36]
    P. R. Prucnal and M. A. Santoro, “Spread spectrum fiberoptic local area network using optical-processing,” Journal of Lightwave Technology, vol. 4, no. 5, pp. 547–554, 1986.Google Scholar
  37. [37]
    D. Brady and S. Verdú, “A semiclassical analysis of optical code division multiple access,” IEEE Transactions on Communications, vol. 39, no. 1, pp. 85–93, 1991.Google Scholar
  38. [38]
    D. D. Sampson, G. J. Pendock, and R. A. Griffin, “Photonic code-division multiple-access communications,” Fiber and Integrated Optics, vol. 16, no. 2, pp. 129–157, 1997.Google Scholar
  39. [39]
    G. J. Pendock, M. J. L. Cahill, and D. D. Sampson, “Multigigabit-per-second demonstration of photonic code-division multiplexing,” Electronics Letters, vol. 31, no. 10, pp. 819–820, 1995.Google Scholar
  40. [40]
    G. J. Pendock and D. D. Sampson, “Increasing the transmission capacity of coherence multiplexed communication systems by using differential detection,” IEEE Photonics Technology Letters, vol. 7, no. 12, pp. 1504–1506, 1995.Google Scholar
  41. [41]
    G. J. Pendock and D. D. Sampson, “Noise in coherence-multiplexed optical fiber systems,” Applied Optics, vol. 36, no. 36, pp. 9536–9540, 1997.Google Scholar
  42. [42]
    G. J. Pendock and D. D. Sampson, “Capacity of coherence-multiplexed cdma networks,” Optics Communications, vol. 143, no. 1–3, pp. 109–117, 1997.Google Scholar
  43. [43]
    M. H. Reeve, A. R. Hunwicks, W. Zhao, S. G. Methley, L. Bickers, and S. Hornung, “LED spectral slicing for single-mode local loop applications,” Electronics Letters, vol. 24, no. 7, pp. 389–390, 1988.Google Scholar
  44. [44]
    D. D. Sampson and W. T. Holloway, “100-mW spectrally-uniform broad-band ASE source for spectrum-sliced WDM systems,” Electronics Letters, vol. 30, no. 19, pp. 1611–1612, 1994.Google Scholar
  45. [45]
    M. Tachibana, R. I. Laming, P. R. Morkel, and D. N. Payne, “Erbium-doped fiber amplifier with flattened gain spectrum,” IEEE Photonics Technology Letters, vol. 3, no. 2, pp. 118–120, 1991.Google Scholar
  46. [46]
    D. D. Sampson and W. T. Holloway, “Transmission of 622Mbit/s spectrum-sliced WDM channel over 60km of nondispersion-shifted fiber at 1550nm,” Electronics Letters, vol. 30, no. 21, pp. 1767–1768, 1994.Google Scholar
  47. [47]
    A. J. Keating, W. T. Holloway, and D. D. Sampson, “Feedforward noise reduction of incoherent light for spectrum-sliced transmission at 2.5 Gb/s,” IEEE Photonics Technology Letters, vol. 7, no. 12, pp. 1513–1515, 1995.Google Scholar
  48. [48]
    A. J. Keating and D. D. Sampson, “Reduction of excess intensity noise in spectrum-sliced incoherent light for WDM applications,” Journal of Lightwave Technology, vol. 15, no. 1, pp. 53–61, 1997.Google Scholar
  49. [49]
    W. T. Holloway, A. J. Keating, and D. D. Sampson, “Multiwavelength source for spectrum-sliced WDM access networks and LAN’s,” IEEE Photonics Technology Letters, vol. 9, no. 7, pp. 1014–1016, 1997.Google Scholar
  50. [50]
    R. D. T. Lauder, J. M. Badcock, W. T. Holloway, and D. D. Sampson, “WDM ring network employing a shared multiwavelength incoherent source,” IEEE Photonics Technology Letters, vol. 10, no. 2, pp. 294–296, 1998.Google Scholar
  51. [51]
    G. J. Pendock and D. D. Sampson, “Transmission performance of high bit rate spectrum-sliced WDM systems,” Journal of Lightwave Technology, vol. 14, no. 10, pp. 2141–2148, 1996.Google Scholar
  52. [52]
    S. D. Personick, “Baseband linearity and equalization in fiber optic digital communication systems,” Bell System Technical Journal, vol. 52, no. 7, pp. 1175–1194, 1973.Google Scholar
  53. [53]
    D. Marcuse, “Calculation of bit-error probability for a lightwave system with optical amplifiers and postdetection Gaussian-noise,” Journal of Lightwave Technology, vol. 9, no. 4, pp. 505–513, 1991.Google Scholar
  54. [54]
    G. J. Pendock and D. D. Sampson, “Signal-to-noise ratio of modulated sources of ase transmitted over dispersive fiber,” IEEE Photonics Technology Letters, vol. 9, no. 7, pp. 1002–1004, 1997.Google Scholar
  55. [55]
    R. A. Griffin, D. A. Jackson, and D. D. Sampson, “Coherence and noise properties of gain-switched Fabry-Perot semiconductor lasers,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 1, no. 2, pp. 569–576, 1995.Google Scholar
  56. [56]
    M. J. L. Cahill, G. J. Pendock, and D. D. Sampson, “Low error rate return-to-zero direct modulation of gain-switched lasers,” Optical and Quantum Electronics, vol. 28, no. 9, pp. 1181–1185, 1996.Google Scholar
  57. [57]
    D. S. Seo, H. F. Liu, D. Y. Kim, and D. D. Sampson, “Injection power and wavelength dependence of an external-seeded gain-switched Fabry-Perot laser,” Applied Physics Letters, vol. 67, no. 11, pp. 1503–1505, 1995.Google Scholar
  58. [58]
    D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science, vol. 254, no. 5035, pp. 1178–1181, 1991.Google Scholar
  59. [59]
    D. D. Sampson and T. R. Hillman, “Optical coherence tomography,” in Lasers and Current Optical Techniques in Biology, vol. 4, G. Palumbo and R. Pratesi, Eds. Cambridge, UK: Royal Society of Chemistry, 2004, pp. 481–571.Google Scholar
  60. [60]
    T. R. Hillman and D. D. Sampson, “The effect of water dispersion and absorption on axial resolution in ultrahigh-resolution optical coherence tomography,” Optics Express, vol. 13, no. 6, pp. 1860–1874, 2005.Google Scholar
  61. [61]
    E. D. J. Smith, A. V. Zvyagin, and D. D. Sampson, “Real-time dispersion compensation in scanning interferometry,” Optics Letters, vol. 27, no. 22, pp. 1998–2000, 2002.Google Scholar
  62. [62]
    J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Optics Letters, vol. 25, no. 1, pp. 25–27, 2000.Google Scholar
  63. [63]
    E. D. J. Smith, S. C. Moore, N. Wada, W. Chujo, and D. D. Sampson, “Spectral domain interferometry for ocdr using non-gaussian broad-band sources,” IEEE Photonics Technology Letters, vol. 13, no. 1, pp. 64–66, 2001.Google Scholar
  64. [64]
    E. D. J. Smith, N. Wada, W. Chujo, and D. D. Sampson, “High resolution OCDR using 1.55 μm supercontinuum source and quadrature spectral detection,” Electronics Letters, vol. 37, no. 21, pp. 1305–1307, 2001.Google Scholar
  65. [65]
    R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, “Spectral shaping for non-Gaussian source spectra in optical coherence tomography,” Optics Letters, vol. 27, no. 6, pp. 406–408, 2002.Google Scholar
  66. [66]
    B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Optics Letters, vol. 27, no. 20, pp. 1800–1802, 2002.Google Scholar
  67. [67]
    D. D. Sampson, N. Wada, K. Kitayama, and W. Chujo, “Demonstration of reconfigurable all-optical code conversion for photonic code-division multiplexing and networking,” Electronics Letters, vol. 36, no. 5, pp. 445–447, 2000.Google Scholar
  68. [68]
    J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications. Englewood: Roberts & Company, 2007.Google Scholar
  69. [69]
    J. C. Dainty, Laser Speckle and Related Phenomena, Second ed. Heidelberg: Springer, 1984.Google Scholar
  70. [70]
    J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” Journal of Biomedical Optics, vol. 4, no. 1, pp. 95–105, 1999.Google Scholar
  71. [71]
    T. R. Hillman, S. G. Adie, V. Seemann, J. J. Armstrong, S. L. Jacques, and D. D. Sampson, “Correlation of static speckle with sample properties in optical coherence tomography,” Optics Letters, vol. 31, no. 2, pp. 190–192, 2006.Google Scholar
  72. [72]
    B. F. Kennedy, T. R. Hillman, A. Curatolo, and D. D. Sampson, “Speckle reduction in optical coherence tomography by strain compounding,” Optics Letters, vol. 35, no. 14, pp. 2445–2447, 2010.Google Scholar
  73. [73]
    B. F. Kennedy, A. Curatolo, T. R. Hillman, C. M. Saunders, and D. D. Sampson, “Speckle reduction in optical coherence tomography images using tissue viscoelasticity,” Journal of Biomedical Optics, vol. 16, no. 2, 2011.Google Scholar
  74. [74]
    D. D. Sampson, “Optical bioimaging 2010: Seeing more, deeper, faster,” IEEE Photonics Journal, vol. 3, no. 2, pp. 278–283, 2011.MathSciNetGoogle Scholar
  75. [75]
    J. C. Clements, A. V. Zvyagin, K. K. M. B. D. Silva, T. Wanner, D. D. Sampson, and W. A. Cowling, “Optical coherence tomography as a novel tool for non-destructive measurement of the hull thickness of lupin seeds,” Plant Breeding, vol. 123, no. 3, pp. 266–270, 2004.Google Scholar
  76. [76]
    S. G. Adie, T. R. Hillman, and D. D. Sampson, “Detection of multiple scattering in optical coherence tomography using the spatial distribution of stokes vectors,” Optics Express, vol. 15, no. 26, pp. 18033–18049, 2007.Google Scholar
  77. [77]
    T. R. Hillman, A. Curatolo, B. F. Kennedy, and D. D. Sampson, “Detection of multiple scattering in optical coherence tomography by speckle correlation of angle-dependent B-scans,” Optics Letters, vol. 35, no. 12, pp. 1998–2000, 2010.Google Scholar
  78. [78]
    D. D. Sampson and D. A. Jackson, “Spread-spectrum optical fiber network based on pulsed coherent correlation,” Electronics Letters, vol. 26, no. 19, pp. 1550–1552, 1990.Google Scholar
  79. [79]
    K. F. Kwong, D. Yankelevich, K. C. Chu, J. P. Heritage, and A. Dienes, “400-Hz mechanical scanning optical delay-line,” Optics Letters, vol. 18, no. 7, pp. 558–560, 1993.Google Scholar
  80. [80]
    R. N. Thurston, J. P. Heritage, A. M. Weiner, and W. J. Tomlinson, “Analysis of picosecond pulse shape synthesis by spectral masking in a grating pulse compressor,” IEEE Journal of Quantum Electronics, vol. 22, no. 5, pp. 682–696, 1986.Google Scholar
  81. [81]
    G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Optics Letters, vol. 22, no. 23, pp. 1811–1813, 1997.Google Scholar
  82. [82]
    A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, and J. A. Izatt, “In vivo video rate optical coherence tomography,” Optics Express, vol. 3, no. 6, pp. 219–228, 1998.Google Scholar
  83. [83]
    K. K. M. B. D. Silva, A. V. Zvyagin, and D. D. Sampson, “Extended range, rapid scanning optical delay line for biomedical interferometric imaging,” Electronics Letters, vol. 35, no. 17, pp. 1404–1406, 1999.Google Scholar
  84. [84]
    A. V. Zvyagin and D. D. Sampson, “Achromatic optical phase shifter-modulator,” Optics Letters, vol. 26, no. 4, pp. 187–189, 2001.Google Scholar
  85. [85]
    A. V. Zvyagin, E. D. J. Smith, and D. D. Sampson, “Delay and dispersion characteristics of a frequency-domain optical delay line for scanning interferometry,” Journal of the Optical Society of America A-Optics Image Science and Vision, vol. 20, no. 2, pp. 333–341, 2003.Google Scholar
  86. [86]
    R. Barer, “Refractometry and interferometry of living cells,” Journal of the Optical Society of America, vol. 47, no. 6, pp. 545–556, 1957.Google Scholar
  87. [87]
    G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive-index of highly scattering human tissue by optical coherence tomography,” Optics Letters, vol. 20, no. 21, pp. 2258–2260, 1995.Google Scholar
  88. [88]
    S. A. Alexandrov, A. V. Zvyagin, K. K. M. B. D. Silva, and D. D. Sampson, “Bifocal-optical coherenc refractometry of turbid media,” Optics Letters, vol. 28, no. 2, pp. 117–119, 2003.Google Scholar
  89. [89]
    A. V. Zvyagin, K. K. M. B. D. Silva, S. A. Alexandrov, T. R. Hillman, J. J. Armstrong, T. Tsuzuki, and D. D. Sampson, “Refractive index tomography of turbid media by bifocal optical coherence refractometry,” Optics Express, vol. 11, no. 25, pp. 3503–3517, 2003.Google Scholar
  90. [90]
    A. M. Zysk, S. G. Adie, J. J. Armstrong, M. S. Leigh, A. Paduch, D. D. Sampson, F. T. Nguyen, and S. A. Boppart, “Needle-based refractive index measurement using low-coherence interferometry,” Optics Letters, vol. 32, no. 4, pp. 385–387, 2007.Google Scholar
  91. [91]
    A. M. Zysk, D. L. Marks, D. Y. Liu, and S. A. Boppart, “Needle-based reflection refractometry of scattering samples using coherence-gated detection,” Optics Express, vol. 15, no. 8, pp. 4787–4794, 2007.Google Scholar
  92. [92]
    R. A. McLaughlin, L. Scolaro, P. Robbins, C. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of cancer with optical coherence tomography,” Journal of Biomedical Optics, vol. 15, no. 4, pp. 046029, 2010.Google Scholar
  93. [93]
    S. G. Adie, B. F. Kennedy, J. J. Armstrong, S. A. Alexandrov, and D. D. Sampson, “Audio frequency in vivo optical coherence elastography,” Physics in Medicine and Biology, vol. 54, no. 10, pp. 3129–3139, 2009.Google Scholar
  94. [94]
    B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Optics Express, vol. 17, no. 24, pp. 21762–21772, 2009.Google Scholar
  95. [95]
    S. G. Adie, X. Liang, B. F. Kennedy, R. John, D. D. Sampson, and S. A. Boppart, “Spectroscopic optical coherence elastography,” Optics Express, vol. 18, no. 25, pp. 25519–25534, 2010.Google Scholar
  96. [96]
    B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Optics Express, vol. 19, no. 7, pp. 6623–6634, 2011.Google Scholar
  97. [97]
    J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annual Review of Biomedical Engineering, vol. 5, pp. 57–78, 2003.Google Scholar
  98. [98]
    R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic-resonance elastography by direct visualization of propagating acoustic strain waves,” Science, vol. 269, no. 5232, pp. 1854–1857, 1995.Google Scholar
  99. [99]
    J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Optics Express, vol. 3, no. 6, pp. 199–211, 1998.Google Scholar
  100. [100]
    B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, and D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” Journal of Biomedical Optics, vol. 15, no. 3, pp. 030507, 2010.Google Scholar
  101. [101]
    A. Curatolo, B. F. Kennedy, and D. D. Sampson, “Structured three-dimensional optical phantoms for optical coherence tomography,” Optics Express, vol. 19, 2011 (in press).Google Scholar
  102. [102]
    X. D. Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, “Imaging needle for optical coherence tomography,” Optics Letters, vol. 25, no. 20, pp. 1520–1522, 2000.Google Scholar
  103. [103]
    J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” Journal of Neurophysiology, vol. 92, no. 5, pp. 3121–3133, 2004.Google Scholar
  104. [104]
    B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an OCT needle probe,” Journal of Biomedical Optics, vol. 16, no. 3, pp. 036009, 2011.Google Scholar
  105. [105]
    R. A. McLaughlin, L. Scolaro, P. Robbins, S. Hamza, C. Saunders, and D. D. Sampson, “Imaging of human lymph nodes using optical coherence tomography: potential for staging cancer,” Cancer Research, vol. 70, no. 7, pp. 2579–2584, 2010.Google Scholar
  106. [106]
    W. Drexler and J. G. Fujimoto (editors), Optical Coherence Tomography: Technology and Applications. Heidelberg: Springer, 2008.Google Scholar
  107. [107]
    S. A. Boppart, W. Luo, D. L. Marks, and K. W. Singletary, “Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer,” Breast Cancer Research and Treatment, vol. 84, no. 2, pp. 85–97, 2004.Google Scholar
  108. [108]
    C. Zhou, D. W. Cohen, Y. H. Wang, H. C. Lee, A. E. Mondelblatt, T. H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Research, vol. 70, no. 24, pp. 10071–10079, 2010.Google Scholar
  109. [109]
    M. J. Cobb, J. H. Hwang, M. P. Upton, Y. C. Chen, B. K. Oelschlager, D. E. Wood, M. B. Kimmey, and X. D. Li, “Imaging of subsquamous Barrett’s epithelium with ultrahigh-resolution optical coherence tomography: a histologic correlation study,” Gastrointestinal Endoscopy, vol. 71, no. 2, pp. 223–230, 2010.Google Scholar
  110. [110]
    J. J. Armstrong, M. S. Leigh, I. D. Walton, A. V. Zvyagin, S. A. Alexandrov, S. Schwer, D. D. Sampson, D. R. Hillman, and P. R. Eastwood, “In vivo size and shape measurement of the human upper airway using endoscopic long-range optical coherence tomography,” Optics Express, vol. 11, no. 15, pp. 1817–1826, 2003.Google Scholar
  111. [111]
    J. J. Armstrong, M. S. Leigh, D. D. Sampson, J. H. Walsh, D. R. Hillman, and P. R. Eastwood, “Quantitative upper airway imaging with anatomic optical coherence tomography,” American Journal of Respiratory and Critical Care Medicine, vol. 173, no. 2, pp. 226–233, 2006.Google Scholar
  112. [112]
    M. S. Leigh, J. J. Armstrong, A. Paduch, J. H. Walsh, D. R. Hillman, P. R. Eastwood, and D. D. Sampson, “Anatomical optical coherence tomography for long-term, portable, quantitative endoscopy,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 4, pp. 1438–1446, 2008.Google Scholar
  113. [113]
    R. A. McLaughlin, J. P. Williamson, M. J. Phillips, J. J. Armstrong, S. Becker, D. R. Hillman, P. R. Eastwood, and D. D. Sampson, “Applying anatomical optical coherence tomography to quantitative 3D imaging of the lower airway,” Optics Express, vol. 16, no. 22, pp. 17521–17529, 2008.Google Scholar
  114. [114]
    J. H. Walsh, M. S. Leigh, A. Paduch, K. J. Maddison, J. J. Armstrong, D. D. Sampson, D. R. Hillman, and P. R. Eastwood, “Effect of body posture on pharyngeal shape and size in adults with and without obstructive sleep apnea,” Sleep, vol. 31, no. 11, pp. 1543–1549, 2008.Google Scholar
  115. [115]
    J. H. Walsh, M. S. Leigh, A. Paduch, K. J. Maddison, D. L. Philippe, J. J. Armstrong, D. D. Sampson, D. R. Hillman, and P. R. Eastwood, “Evaluation of pharyngeal shape and size using anatomical optical coherence tomography in individuals with and without obstructive sleep apnoea,” Journal of Sleep Research, vol. 17, no. 2, pp. 230–238, 2008.Google Scholar
  116. [116]
    R. A. McLaughlin, J. J. Armstrong, S. Becker, J. H. Walsh, A. Jain, D. R. Hillman, P. R. Eastwood, and D. D. Sampson, “Respiratory gating of anatomical optical coherence tomography images of the human airway,” Optics Express, vol. 17, no. 8, pp. 6568–6577, 2009.Google Scholar
  117. [117]
    J. P. Williamson, R. A. McLaughlin, M. J. Phillips, J. J. Armstrong, S. Becker, J. H. Walsh, D. D. Sampson, D. R. Hillman, and P. R. Eastwood, “Using optical coherence tomography to improve diagnostic and therapeutic bronchoscopy,” Chest, vol. 136, no. 1, pp. 272–276, 2009.Google Scholar
  118. [118]
    P. B. Noble, R. A. McLaughlin, A. R. West, S. Becker, J. J. Armstrong, P. K. McFawn, P. R. Eastwood, D. R. Hillman, D. D. Sampson, and H. W. Mitchell, “Distribution of airway narrowing responses across generations and at branching points, assessed in vitro by anatomical optical coherence tomography,” Respiratory Research, vol. 11, no. 1, doi:10.1186/1465-9921-11-9 (12 pages), 2010.Google Scholar
  119. [119]
    P. B. Noble, A. R. West, R. A. McLaughlin, J. J. Armstrong, S. Becker, P. K. McFawn, J. P. Williamson, P. R. Eastwood, D. R. Hillman, D. D. Sampson, and H. W. Mitchell, “Airway narrowing assessed by anatomical optical coherence tomography in vitro: dynamic airway wall morphology and function,” Journal of Applied Physiology, vol. 108, no. 2, pp. 401–411, 2010.Google Scholar
  120. [120]
    J. P. Williamson, J. J. Armstrong, R. A. McLaughlin, P. B. Noble, A. R. West, S. Becker, A. Curatolo, W. J. Noffsinger, H. W. Mitchell, M. J. Phillips, D. D. Sampson, D. R. Hillman, and P. R. Eastwood, “Measuring airway dimensions during bronchoscopy using anatomical optical coherence tomography,” European Respiratory Journal, vol. 35, no. 1, pp. 34–41, 2010.Google Scholar
  121. [121]
    J. P. Williamson, R. A. McLaughlin, W. J. Noffsingerl, A. L. James, V. A. Baker, A. Curatolo, J. J. Armstrong, A. Regli, K. L. Shepherd, G. B. Marks, D. D. Sampson, D. R. Hillman, and P. R. Eastwood, “Elastic properties of the central airways in obstructive lung diseases measured using anatomical optical coherence tomography,” American Journal of Respiratory and Critical Care Medicine, vol. 183, no. 5, pp. 612–619, 2011.Google Scholar
  122. [122]
    J. J. Armstrong and D. D. Sampson, “Distance ranging to biological tissue using fiber-optic Fabry-Perot, short tuning range FMCW interferometry,” in Proc. SPIE (OFS-14), vol. 4185 (A. G. Mignani, H. C. Lefevre, Eds.), pp. 366–369, 2000.Google Scholar
  123. [123]
    B. Lau, R. A. McLaughlin, A. Curatolo, R. W. Kirk, D. K. Gerstmann, and D. D. Sampson, “Imaging true 3d endoscopic anatomy by incorporating magnetic tracking with optical coherence tomography: proof-of-principle for airways,” Optics Express, vol. 18, no. 26, pp. 27173–27180, 2010.Google Scholar
  124. [124]
    A. D. Lucey, A. J. C. King, G. A. Tetlow, J. Wang, J. J. Armstrong, M. S. Leigh, A. Paduch, J. H. Walsh, D. D. Sampson, P. R. Eastwood, and D. R. Hillman, “Measurement, reconstruction, and flow-field computation of the human pharynx with application to sleep apnea,” IEEE Transactions on Biomedical Engineering, vol. 57, no. 10, pp. 2535–2548, 2010.Google Scholar
  125. [125]
    J. P. Williamson, R. A. McLaughlin, M. J. Phillips, A. Curatolo, J. J. Armstrong, K. J. Maddison, R. E. Sheehan, D. D. Sampson, D. R. Hillman, and P. R. Eastwood, “Feasibility of applying real-time optical imaging during bronchoscopic interventions for central airway obstruction,” Journal of Bronchology and Interventional Pulmonology, vol. 17, no. 4, pp. 307–316, 2010.Google Scholar
  126. [126]
    P. D. Pare, “Central airway compliance in asthma up or down? Good or bad?,” American Journal of Respiratory and Critical Care Medicine, vol. 183, no. 5, pp. 563–564, 2011.Google Scholar
  127. [127]
    O. Vargas, E. K. Chan, J. K. Barton, H. G. Rylander, and A. J. Welch, “Use of an agent to reduce scattering in skin,” Lasers in Surgery and Medicine, vol. 24, no. 2, pp. 133–141, 1999.Google Scholar
  128. [128]
    G. Vargas, K. F. Chan, S. L. Thomsen, and A. J. Welch, “Use of osmotically active agents to alter optical properties of tissue: effects on the detected fluorescence signal measured through skin,” Lasers in Surgery and Medicine, vol. 29, no. 3, pp. 213–220, 2001.Google Scholar
  129. [129]
    R. Cicchi, F. S. Pavone, D. Massi, and D. D. Sampson, “Contrast and depth enhancement in two-photon microscopy of human skin ex vivo by use of optical clearing agents,” Optics Express, vol. 13, no. 7, pp. 2337–2344, 2005.Google Scholar
  130. [130]
    V. V. Tuchin, Optical Clearing of Tissues and Blood. Bellingham, Wash.: SPIE Press, 2006.Google Scholar
  131. [131]
    J. M. Schmitt and G. Kumar, “Turbulent nature of refractive-index variations in biological tissue,” Optics Letters, vol. 21, no. 16, pp. 1310–1312, 1996.Google Scholar
  132. [132]
    J. M. Schmitt and A. Knüttel, “Model of optical coherence tomography of heterogeneous tissue,” Journal of the Optical Society of America A-Optics Image Science and Vision, vol. 14, no. 6, pp. 1231–1242, 1997.Google Scholar
  133. [133]
    J. M. Schmitt and G. Kumar, “Optical scattering properties of soft tissue: A discrete particle model,” Applied Optics, vol. 37, no. 13, pp. 2788–2797, 1998.Google Scholar
  134. [134]
    D. H. P. Schneiderheinze, T. R. Hillman, and D. D. Sampson, “Modified discrete particle model of optical scattering in skin tissue accounting for multiparticle scattering,” Optics Express, vol. 15, no. 23, pp. 15002–15010, 2007.Google Scholar
  135. [135]
    C. A. Morton and R. M. MacKie, “Clinical accuracy of the diagnosis of cutaneous malignant melanoma,” British Journal of Dermatology, vol. 138, no. 2, pp. 283–287, 1998.Google Scholar
  136. [136]
    C. M. Grin, A. W. Kopf, B. Welkovich, R. S. Bart, and M. J. Levenstein, “Accuracy in the clinical diagnosis of malignant melanoma,” Archives of Dermatology, vol. 126, no. 6, pp. 763–766, 1990.Google Scholar
  137. [137]
    B. W. Murphy, R. J. Webster, B. A. Turlach, C. J. Quirk, C. D. Clay, P. J. Heenan, and D. D. Sampson, “Toward the discrimination of early melanoma from common and dysplastic nevus using fiber optic diffuse reflectance spectroscopy,” Journal of Biomedical Optics, vol. 10, no. 6, pp. 064020, 2005.Google Scholar
  138. [138]
    N. N. Boustany, S. C. Kuo, and N. V. Thakor, “Optical scatter imaging: Subcellular morphometry in situ with Fourier filtering,” Optics Letters, vol. 26, no. 14, pp. 1063–1065, 2001.Google Scholar
  139. [139]
    S. A. Alexandrov, T. R. Hillman, and D. D. Sampson, “Spatially resolved Fourier holographic light scattering angular spectroscopy,” Optics Letters, vol. 30, no. 24, pp. 3305–3307, 2005.Google Scholar
  140. [140]
    T. R. Hillman, S. A. Alexandrov, T. Gutzler, and D. D. Sampson, “Microscopic particle discrimination using spatially-resolved fourier-holographic light scattering angular spectroscopy,” Optics Express, vol. 14, pp. 11088–11102, 2006.Google Scholar
  141. [141]
    T. Gutzler, T. R. Hillman, S. A. Alexandrov, and D. D. Sampson, “Three-dimensional depth-resolved and extended-resolution micro-particle characterization by holographic light scattering spectroscopy,” Optics Express, vol. 18, no. 24, pp. 25116–25126, 2010.Google Scholar
  142. [142]
    S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Physical Review Letters, vol. 97, no. 16, pp. 168102, 2006.Google Scholar
  143. [143]
    S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy (vol. 97, art. 168102, 2006),” Physical Review Letters, vol. 98, no. 9, pp. 099905, 2007.Google Scholar
  144. [144]
    S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Digital Fourier holography enables wide-field, superresolved, microscopic characterization,” In the special issue “Optics in 2007” of Optics & Photonics News, vol. 18, pp. 29, 2007.Google Scholar
  145. [145]
    T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Optics Express, vol. 17, no. 10, pp. 7873–7892, 2009.Google Scholar
  146. [146]
    T. Gutzler, T. R. Hillman, S. A. Alexandrov, and D. D. Sampson, “Coherent aperture-synthesis, wide-field, high-resolution holographic microscopy of biological tissue,” Optics Letters, vol. 35, no. 8, pp. 1136–1138, 2010.Google Scholar
  147. [147]
    S. A. Alexandrov and D. D. Sampson, “Spatial information transmission beyond a system’s diffraction limit using optical spectral encoding of spatial frequency,” Journal of Optics A: Pure and Applied Optics, vol. 10, no. 2, pp. 025304, 2008.Google Scholar

Copyright information

© The Author(s) 2011

This article is published under license to BioMed Central Ltd. Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering and Centre for Microscopy, Characterisation & Analysisthe University of Western AustraliaCrawleyAustralia

Personalised recommendations