Photonic Sensors

, Volume 2, Issue 1, pp 81–91 | Cite as

Experimental study of perfectly patterned silica-titania optical waveguide

  • Rimlee Deb Roy
  • Devika Sil
  • Sunirmal Jana
  • Prasanta Kumar Biswas
  • Shyamal Kumar BhadraEmail author
Open Access


Inorganic silica-titania thin films with thicknesses 150 nm–200 nm are deposited on high purity and polished silicon wafer and silica glass substrates by sol-gel dipping process and are patterned by capillary force lithography technique. Subsequently grating structure is embossed in green stage. The patterned gel films are subjected to stepwise heat treatment to 500 °C and above in pure oxygen atmosphere in order to achieve major conversion of mixed-gel to oxide optical films which are characterized by Ellipsometry, Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM) to optimize the fabrication parameters and to get perfectly matched film. Removal of organics and formation of perfectly inorganic silica-titania network at optimized heat treatment in controlled environment are ensured by FTIR spectral study. The difference in refractive indices between the substrate and coated film as calculated theoretically matches exactly with the developed waveguides for operating wavelength (632.8 nm) and the measured optical properties show the planar waveguide behavior of the films.


Optical properties sol-gel technique thin films oxides 


  1. [1]
    W. Que, Y. Zhou, Y. L. Lam, Y. C. Chan, H. T. Tan, T. H. Tan, and C. H. Kam, “Sol-gel processed silica/titania/ÿ - glycidoxypropyltrimethoxysilane composite materials for photonics applications,” J. Electron. Mater., vol. 29, no. 8, pp. 1052–1058, 2000.CrossRefGoogle Scholar
  2. [2]
    M. Yoshida and P. N. Prasad, “Sol-gel-processed SiO2/TiO2/poly(vinylpyrrolidone) composite materials for optical waveguides,” Chem. Mater., vol. 8, no. 1, pp. 235–41, 1996.CrossRefGoogle Scholar
  3. [3]
    A. Ghatak and K. Thyagarajan, Optical Electronics. UK: Cambridge University Press (reprinted in 2003), 1989, Chapters 11 and 14.CrossRefGoogle Scholar
  4. [4]
    C. J. Brinker and A. J. Hurd, “Fundamentals of sol-gel dip-coating,” Journal de Physique III, vol. 4, no. 7, pp. 1231–1242, 1994.CrossRefGoogle Scholar
  5. [5]
    R. Waldhausl, B. Schnabe, P. Dannberg, E. B. Kley, A. Brauer, and W. Karthe, “Efficient coupling into polymer waveguides by gratings,” Appl. Opt., vol. 36, no. 36, pp. 9383–9390, 1997.CrossRefGoogle Scholar
  6. [6]
    W. Que and X. Hu, “Optical and mechanical properties of sol-gel silica-titania hard optical coatings derived from methyltrimethoxysilane and tetrapropylorthotitanate as precursors,” Opt. Mater., vol. 22, no. 1, pp. 31–37, 2003.CrossRefGoogle Scholar
  7. [7]
    R. Mizutani, Y. Oono, J. Matsuoka, H. Nasu, and K. Kamiya, “Coating of polymethylmethacrylate with transparent SiO2 thin films by a sol-gel method,” J. Mater. Sci., vol. 29, no. 21, pp. 5773–5778, 1994.CrossRefGoogle Scholar
  8. [8]
    A. Lukowiak, R. Dylewicz, S. Patela, W. Strek, and K. Maruszewski, “Optical properties of SiO2-TiO2 thin film waveguides obtained by the sol-gel method and their applications for sensing purposes,” Opt. Mat., vol. 27, no. 9, pp. 1501–1505, 2005.CrossRefGoogle Scholar
  9. [9]
    E. Hild, “Planar wave guides as chemical and biological sensors,” accessed September 2009:
  10. [10]
    X. Yu, Z. Wang, R. Xing, S. Luan, and Y. Han, “Solvent assisted capillary force lithography,” Polymer, vol. 46, no. 24, pp. 11099–11103, 2005.CrossRefGoogle Scholar
  11. [11]
    H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated optoelectronic devices based on conjugated polymers,” Science, vol. 280, no. 5370, pp. 1741–1744, 1998.CrossRefGoogle Scholar
  12. [12]
    N. Tessler, N. T. Harrison, and R. H. Friend, “High peak brightness polymer light-emitting diodes,” Adv. Mater., vol. 10, no. 1, pp. 64–68, 1998.CrossRefGoogle Scholar
  13. [13]
    Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci., vol. 28, no. 1, pp. 153–184, 1998.CrossRefGoogle Scholar
  14. [14]
    K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B, vol. 6, no. 2, pp. 209–220, 1989.CrossRefGoogle Scholar
  15. [15]
    K. Y. Suh and H. H. Lee, “Capillary force lithography: large-area patterning, self-organization and anisotropic dewetting,” Adv. Funct. Mater., vol. 12, no. 6+7, pp. 405–413, 2002.CrossRefGoogle Scholar
  16. [16]
    D. Y. Khang and H. H. Lee, “Pressure-assisted capillary force lithography,” Adv. Mater., vol. 16, no. 2, pp. 176–179, 2004.CrossRefGoogle Scholar
  17. [17]
    W. Lukosz and K. Tiefenthaler, “Embossing technique for fabricating integrated optical components in hard inorganic waveguiding materials,” Optics Lett., vol. 8, no. 10, pp. 537–539, 1983.CrossRefGoogle Scholar
  18. [18]
    K. Heuberger and W. Lukosz, “Embossing technique for fabricating surface relief gratings on hard waveguides,” Appl. Opt., vol. 25, no. 9, pp. 1499–1504, 1986.CrossRefGoogle Scholar
  19. [19]
    K. Tiefenthaler and W. Lukosz, “Integrated optical switches and gas sensors,” Optics Lett., vol. 10, no. 4, pp. 137–139, 1984.CrossRefGoogle Scholar
  20. [20]
    R. E. Kunz, J. Dubendorfer, and R. H. Morf, “Finite grating depth effects for integrated optical sensors with high sensitivity,” Bios. Bioelectron., vol. 11, no. 6/7, pp. 653–667, 1996.CrossRefGoogle Scholar
  21. [21]
    R. E. Kunz, “Gradient effective index waveguide sensors,” Sensors. Actuators B, vol. 11, no. 1–3, pp. 167–176, 1993.MathSciNetCrossRefGoogle Scholar
  22. [22]
    M. Montagna, E. Moser, F. Visintainer, M. Ferrari, L. Zampedri, A. Martucci, M. Guglielmi, and M. Ivanda, “Nucleation of titania nanocrystals in silica titania waveguides,” J. Sol. Gel. Sci. Tech., vol. 26, no. 1–3, pp. 241–244, 2003.CrossRefGoogle Scholar
  23. [23]
    P. K. Biswas, D. Kundu, and D. Ganguli, “A sol-gel derived antireflective coating on optical glass for near-infrared applications,” J. Mat. Sci. Lett., vol. 8, pp. 1436–1437, 1989.CrossRefGoogle Scholar
  24. [24]
    A. K. Atta, P. K. Biswas, and D. Ganguli, “A sol-gel derived yellow-transmitting coating on glass,” J. Non-Cryst. Solids, vol. 125, no. 3, pp. 202–207, 1990.CrossRefGoogle Scholar
  25. [25]
    G. Brusatin, M. Guglielmi, P. Innocenzi, A. Martucci, G. Battaglin, S. Pelli, and G. Righini, “Microstructural and optical properties of sol-gel silica-titania waveguides,” J. Non-Cryst. Solids, vol. 220, no. 2–3, pp. 202–209, 1997.CrossRefGoogle Scholar
  26. [26]
    O. Martins and R. M. Almeida, “Sintering anomaly in silica-titania sol-gel films,” J. Sol. Gel. Sci. Tech., vol. 19, no. 1–3, pp. 651–655, 2000.CrossRefGoogle Scholar
  27. [27]
    I. Szendro, “Art and practice to emboss gratings into sol-gel waveguides,” Proc. SPIE, vol. 4284, pp. 80–87, 2001.CrossRefGoogle Scholar
  28. [28]
    M. Gonuguntla, A. Sharma, R. Mukherjee, and S. A. Subramaniam, “Control of self-organized contact instability and patterning in soft elastic films,” Langmuir, vol. 22, no. 16, pp. 7066–7071, 2006.CrossRefGoogle Scholar
  29. [29]
    K. Schrijnemakers and E. F. Vansant, “Preparation of titanium oxide supported MCM-48 by the designed dispersion of titanylacetylacetone,” J. Porous Mater., vol. 8, no. 2, pp. 83–90, 2001.CrossRefGoogle Scholar
  30. [30]
    S. Jana, M. A. Lim, I. C. Baek, C. H. Kim, and S. II Seok, “Non-hydrolytic sol-gel synthesis of epoxysilane-based inorganic hybrid,” Mat Chem Phys., vol. 112, no. 3, pp. 1008–1014, 2008.CrossRefGoogle Scholar
  31. [31]
    D. Akram, S. Ahmad, E. Sharmin, and S. Ahmad, “Silica reinforced organic-inorganic hybrid polyurethane nanocomposites from sustainable resource,” Macromol. Chem. Phys., vol. 211, no. 4, pp. 412–419, 2010.CrossRefGoogle Scholar
  32. [32]
    P. Cheng, M. P. Zheng, Y. P. Jin, Q. Huang, and M. Y. Gu, “Preparation and characterization of silica-doped titania photocatalyst through sol-gel method,” Mater. Lett., vol. 57, no. 20, pp. 2989–2994, 2003.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

This article is published under license to BioMed Central Ltd. Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Rimlee Deb Roy
    • 1
  • Devika Sil
    • 2
    • 3
  • Sunirmal Jana
    • 2
  • Prasanta Kumar Biswas
    • 2
  • Shyamal Kumar Bhadra
    • 1
    Email author
  1. 1.Fiber Optics & Photonics DivisionCentral Glass & Ceramic Research InstituteJadavpur, KolkataIndia
  2. 2.Sol-Gel DivisionCentral Glass & Ceramic Research InstituteJadavpur, KolkataIndia
  3. 3.Department of ChemistryTemple UniversityPhiladelphiaUSA

Personalised recommendations