Advertisement

Photonic Sensors

, Volume 1, Issue 3, pp 222–227 | Cite as

Broadband Fourier-domain mode-locked lasers

  • Kevin HsuEmail author
  • Panomsak Meemon
  • Kye-Sung Lee
  • Peter J. Delfyett
  • Jannick P. Rolland
Open Access
Regular

Abstract

Broadband, high-speed wavelength-swept lasers can substantially enhance applications in optical coherence tomography, chemical spectroscopy, and fiber-optic sensing. We report the demonstration of Fourier-domain mode-lock lasers operating at about 90 kHz effective sweep rate over a 158 nm sweep range using a single-band design and over a 284 nm sweep range across the 1.3 μm to 1.5 μm wavelength spectrum using a unique broadband design. A novel dual-detection full-range Fourier-domain optical coherence tomography system is developed which provides 7 μm axial resolution (in air) at about 90 kHz axial scan rate for mirror-image resolved Doppler imaging in a human finger and an African frog tadpole.

Keywords

Fourier-domain mode-locked laser swept laser tunable laser 

References

  1. [1]
    M. A. Choma, K. Hsu, J. A. Izat, “Swept source optical coherence tomography using an all-fiber 1300nm fiber ring swept laser source,” J. Bio-Medical Optics, vol. 10, no. 4, pp. 044009(1–6), 2005.Google Scholar
  2. [2]
    R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: Design and Scaling Principles,” Optics Express, vol. 13, no. 9, pp. 3513–3528, 2005.ADSCrossRefGoogle Scholar
  3. [3]
    J. Zhang, Q. Wang, B. Rao, Z. Chen, and K. Hsu, “Swept laser source at 1 micron for Fourier domain optical coherence tomography,” Appl. Physics Lett., vol. 89, no. 7, pp. 073901(1–3), 2006.Google Scholar
  4. [4]
    L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Optics Express, vol. 15, no. 23, pp. 15115–15128, 2007.ADSCrossRefGoogle Scholar
  5. [5]
    K. Hsu, T. Haber, J. Mock, J. Volcy, and T. W. Graver, “High-speed swept-laser interrogation system for vibration monitoring,” Structural Health Monitoring, Lancaster, PA: DEStech Publications, 2003, pp. 1043–1050.Google Scholar
  6. [6]
    R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Optics Express, vol. 14, no. 8, pp. 3225–3237, 2006.ADSCrossRefGoogle Scholar
  7. [7]
    R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier domain mode locking at 1050nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Optics Letters, vol. 32, no. 14, pp. 2049–2051, 2007.ADSCrossRefGoogle Scholar
  8. [8]
    D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Optics Express, vol. 16, no. 7, pp. 4376–4393, 2008.ADSCrossRefGoogle Scholar
  9. [9]
    A. Bilenca, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Numerical study of wavelength-swept semiconductor ring lasers: the role of refractive index nonlinearities in semiconductor optical amplifiers and implications for biomedical imaging applications,” Optics Letters, vol. 31, no. 6, pp. 760–762, 2006.ADSCrossRefGoogle Scholar
  10. [10]
    W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers,” IEEE Photon. Technol. Lett., vol. 17, no. 3, pp. 678–680, 2005.ADSCrossRefGoogle Scholar
  11. [11]
    M. Y. Jeon, J. Zhang, Q. Wang, and Z. Chen, “High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs,” Optics Express, vol. 16, no. 4, pp. 2547–2554, 2008.ADSCrossRefGoogle Scholar
  12. [12]
    K. Lee, P. Meemon, W. Dallas, K. Hsu, and J. P. Rolland, “Dual detection full range frequency domain optical coherence tomography,” Opt. Lett., vol. 35, no. 7, pp. 1058–1060, 2010.ADSCrossRefGoogle Scholar
  13. [13]
    P. Meemon, K. S. Lee, and J. P. Rolland, “Doppler imaging with dual-detection full-range frequency domain optical coherence tomography,” Biomed. Opt. Express, vol. 1, no. 2, pp. 537–552, 2010.CrossRefGoogle Scholar
  14. [14]
    P. Meemon and J. P. Rolland, “Swept-source based, single-shot, multi-detectable velocity range Doppler optical coherence tomography,” Biomed. Opt. Express, vol. 1, no. 3, pp. 955–966, 2010.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Kevin Hsu
    • 1
    Email author
  • Panomsak Meemon
    • 2
    • 3
  • Kye-Sung Lee
    • 3
  • Peter J. Delfyett
    • 2
  • Jannick P. Rolland
    • 3
    • 2
  1. 1.Micron Optics, Inc.AtlantaUSA
  2. 2.CREOL, The College of Optics and PhotonicsUniversity of Central FloridaOrlandoUSA
  3. 3.The Institute of OpticsUniversity of RochesterRochesterUSA

Personalised recommendations