3D Research

, 9:53 | Cite as

Non-linear Cryptosystem for Image Encryption Using Radial Hilbert Mask in Fractional Fourier Transform Domain

  • Priyanka MaanEmail author
  • Hukum Singh
3DR Express
Part of the following topical collections:
  1. Cryptography


An asymmetric image encryption scheme has been proposed in the fractional Fourier transform (FRT) domain, using a radial Hilbert mask in the input plane and a random phase mask based in the frequency plane. The use of a radial Hilbert mask provides an addition of extra encryption parameter along with the asymmetric scheme which is non-linear where the encryption and decryption keys are different. The encrypted image resulting from the application of FRT is attenuated by a factor and combined with the asymmetric scheme to provide an encrypted image. The decryption process is the reverse of the encryption. The designed scheme has been implemented digitally using MATLAB R2014a ( By analysing the decryption results using input images the strength and efficacy of the proposed scheme has been established. The performance assessment of the method has been evaluated in terms of peak signal-to-noise ratio, mean-squared-error (MSE). The proposed scheme provides increased security.


Radial Hilbert mask Fractional Fourier transform Asymmetric cryptosystem Mean-squared-error Peak signal-to-noise ratio 


  1. 1.
    Javidi, B., Carnicer, A., Yamaguchi, M., Nomura, T., Pérez-Cabré, E., Millán, M. S., et al. (2016). Roadmap on optical security. Journal of Optics, 18(8), 083001.CrossRefGoogle Scholar
  2. 2.
    Refregier, P., & Javidi, B. (1995). Optical image encryption based on input plane and Fourier plane random encoding. Optics Letters, 20(7), 767–769.CrossRefGoogle Scholar
  3. 3.
    Garcia, J., Mas, D., & Dorsch, R. G. (1996). Fractional-Fourier-transform calculation through the fast-Fourier-transform algorithm. Applied Optics, 35(35), 7013–7018.CrossRefGoogle Scholar
  4. 4.
    Unnikrishnan, G., Joseph, J., & Singh, K. (2000). Optical encryption by double-random phase encoding in the fractional Fourier domain. Optics Letters, 25(12), 887–889.CrossRefGoogle Scholar
  5. 5.
    Girija, R., & Singh, H. (2018). Symmetric cryptosystem based on chaos structured phase masks and equal modulus decomposition using fractional Fourier transform. 3D Research, 9(3), 42.CrossRefGoogle Scholar
  6. 6.
    Situ, G., & Zhang, J. (2004). Double random-phase encoding in the Fresnel domain. Optics Letters, 29(14), 1584–1586.CrossRefGoogle Scholar
  7. 7.
    Singh, H., Yadav, A. K., Vashisth, S., & Singh, K. (2015). Optical image encryption using devil’s vortex toroidal lens in the Fresnel transform domain. International Journal of Optics, 2015, 1–13.CrossRefGoogle Scholar
  8. 8.
    Singh, H. (2016). Cryptosystem for securing image encryption using structured phase masks in Fresnel wavelet transform domain. 3D Research, 4(7), 1–18.Google Scholar
  9. 9.
    Hennelly, B. M., & Sheridan, J. T. (2004). Random phase and jigsaw encryption in the Fresnel domain. Optical Engineering, 43(10), 2239–2249.CrossRefGoogle Scholar
  10. 10.
    Liu, Z., Xu, L., Lin, C., Dai, J., & Liu, S. (2011). Image encryption scheme by using iterative random phase encoding in gyrator transform domains. Optics and Lasers in Engineering, 49(4), 542–546.CrossRefGoogle Scholar
  11. 11.
    Singh, H., Yadav, A. K., Vashisth, S., & Singh, K. (2014). Fully phase image encryption using double random-structured phase masks in gyrator domain. Applied Optics, 53(28), 6472–6481.CrossRefGoogle Scholar
  12. 12.
    Singh, H., Yadav, A. K., Vashisth, S., & Singh, K. (2015). Double phase-image encryption using gyrator transforms, and structured phase mask in the frequency plane. Optics and Lasers in Engineering, 67, 145–156.CrossRefGoogle Scholar
  13. 13.
    Chen, L., & Zhao, D. (2006). Optical image encryption with Hartley transforms. Optics Letters, 31(23), 3438–3440.CrossRefGoogle Scholar
  14. 14.
    Singh, H. (2016). Optical Cryptosystem of color images based on fractional-, wavelet transform domains using random phase masks. Indian Journal of Science and Technology, 9(S1), 1–15.Google Scholar
  15. 15.
    Gong, L., Liu, X., Zheng, F., & Zhou, N. (2013). Flexible multiple-image encryption algorithm based on log-polar transform and double random phase encoding technique. Journal of Modern Optics, 60(13), 1074–1082.CrossRefGoogle Scholar
  16. 16.
    Qin, W., & Peng, X. (2010). Asymmetric cryptosystem based on phase-truncated Fourier transforms. Optics Letters, 35(2), 118–120.CrossRefGoogle Scholar
  17. 17.
    Wang, X., & Zhao, D. (2011). Security enhancement of a phase-truncation based image encryption algorithm. Applied Optics, 50(36), 6645–6651.CrossRefGoogle Scholar
  18. 18.
    Rajput, S. K., & Nishchal, N. K. (2012). Image encryption based on interference that uses fractional Fourier domain asymmetric keys. Applied Optics, 51(10), 1446–1452.CrossRefGoogle Scholar
  19. 19.
    Wang, X., & Zhao, D. (2012). A special attack on the asymmetric cryptosystem based on phase-truncated Fourier transforms. Optics Communications, 285(6), 1078–1081.CrossRefGoogle Scholar
  20. 20.
    Wang, Y., Quan, C., & Tay, C. J. (2015). Improved method of attack on an asymmetric cryptosystem based on phase-truncated Fourier transform. Applied Optics, 54(22), 6874–6881.CrossRefGoogle Scholar
  21. 21.
    Cai, J., Shen, X., Lei, M., Lin, C., & Dou, S. (2015). Asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition. Optics Letters, 40(4), 475–478.CrossRefGoogle Scholar
  22. 22.
    Cai, J., Shen, X., & Lin, C. (2016). Security-enhanced asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition. Optics Communications, 359, 26–30.CrossRefGoogle Scholar
  23. 23.
    Fatima, A., & Nishchal, N. K. (2016). Discussion on comparative analysis and a new attack on optical asymmetric cryptosystem. JOSA A, 33(10), 2034–2040.CrossRefGoogle Scholar
  24. 24.
    Wang, Y., Quan, C., & Tay, C. J. (2016). New method of attack and security enhancement on an asymmetric cryptosystem based on equal modulus decomposition. Applied Optics, 55(4), 679–686.CrossRefGoogle Scholar
  25. 25.
    Zhao, T., Ran, Q., & Chi, Y. (2015). Image encryption based on nonlinear encryption system and public-key cryptography. Optics Communications, 338, 64–72.CrossRefGoogle Scholar
  26. 26.
    Zhao, T., Ran, Q., Yuan, L., Chi, Y., & Ma, J. (2016). Optical image encryption using password key based on phase retrieval algorithm. Journal of Modern Optics, 63(8), 771–776.CrossRefGoogle Scholar
  27. 27.
    Zhou, N., Li, H., Wang, D., Pan, S., & Zhou, Z. (2015). Image compression and encryption scheme based on 2D compressive sensing and fractional Mellin transform. Optics Communications, 343, 10–21.CrossRefGoogle Scholar
  28. 28.
    Chen, L., Gao, X., Chen, X., He, B., Liu, J., & Li, D. (2016). A new optical image cryptosystem based on two-beam coherent superposition and unequal modulus decomposition. Optics & Laser Technology, 78, 167–174.CrossRefGoogle Scholar
  29. 29.
    Zhou, N., Jiang, H., Gong, L., & Xie, X. (2018). Double-image compression and encryption algorithm based on co-sparse representation and random pixel exchanging. Optics and Lasers in Engineering, 110, 72–79.CrossRefGoogle Scholar
  30. 30.
    Chen, H., Tanougast, C., Liu, Z., & Sieler, L. (2017). Asymmetric optical cryptosystem for color image based on equal modulus decomposition in gyrator transform domains. Optics and Lasers in Engineering, 93, 1–8.CrossRefGoogle Scholar
  31. 31.
    Zhou, N., Chen, W., Yan, X., & Wang, Y. (2018). Bit-level quantum color image encryption scheme with quantum cross-exchange operation and hyper-chaotic system. Quantum Information Processing, 17, 1–24.MathSciNetCrossRefGoogle Scholar
  32. 32.
    Maan, P., & Singh, H. (2017). A survey on the applicability of Fourier transform and fractional fourier transform on various problems of image encryption. In Communication and computing systems: proceedings of the international conference on communication and computing systems (ICCCS 2016), Gurgaon, India, September 9–11, 2016 (p. 475). CRC Press.Google Scholar
  33. 33.
    Singh, H. (2018). Watermarking image encryption using deterministic phase mask and singular value decomposition in fractional Mellin transform domain. IET Image Processing, 12(11), 1994–2001.CrossRefGoogle Scholar
  34. 34.
    Barrera, J. F., Henao, R., & Torroba, R. (2005). Optical encryption method using toroidal zone plates. Optics Communications, 248(1), 35–40.CrossRefGoogle Scholar
  35. 35.
    Barrera, J. F., Henao, R., & Torroba, R. (2005). Fault tolerances using toroidal zone plate encryption. Optics Communications, 256(4), 489–494.CrossRefGoogle Scholar
  36. 36.
    Yadav, A. K., Vashisth, S., Singh, H., & Singh, K. (2015). A phase-image watermarking scheme in gyrator domain using devil’s vortex Fresnel lens as a phase mask. Optics Communications, 344, 172–180.CrossRefGoogle Scholar
  37. 37.
    Yadav, P. L., & Singh, H. (2018). Optical double image hiding in the fractional Hartley transform using structured phase filter and Arnold transform. 3D Research, 9(2), 20.CrossRefGoogle Scholar
  38. 38.
    Liansheng, S., Bei, Z., Xiaojuan, N., & Ailing, T. (2016). Optical multiple-image encryption based on the chaotic structured phase masks under the illumination of a vortex beam in the gyrator domain. Optics Express, 24(1), 499–515.CrossRefGoogle Scholar
  39. 39.
    Yadav, A. K., Vashisth, S., Singh, H., & Singh, K. (2015). Optical cryptography and watermarking using some fractional canonical transforms, and structured masks. Advances in optical science and engineering (pp. 25–36). New Delhi: Springer.CrossRefGoogle Scholar
  40. 40.
    Abuturab, M. R. (2013). Color information security system using Arnold transform and double structured phase encoding in gyrator transform domain. Optics & Laser Technology, 45, 525–532.CrossRefGoogle Scholar
  41. 41.
    Abuturab, M. R. (2012). Color image security system using double random-structured phase encoding in gyrator transform domain. Applied Optics, 51(15), 3006–3016.CrossRefGoogle Scholar
  42. 42.
    Rajput, S. K., & Nishchal, N. K. (2012). Asymmetric color cryptosystem using polarization selective diffractive optical element and structured phase mask. Applied Optics, 51(22), 5377–5386.CrossRefGoogle Scholar
  43. 43.
    Singh, H. (2016). Devil’s vortex Fresnel lens phase masks on an asymmetric cryptosystem based on phase-truncated in gyrator wavelet transform. Optics and Lasers in Engineering, 81, 125–139.CrossRefGoogle Scholar
  44. 44.
    Vashisth, S., Singh, H., Yadav, A. K., & Singh, K. (2014). Image encryption using fractional Mellin transform, structured phase filters, and phase retrieval. Optik-International Journal for Light and Electron Optics, 125(18), 5309–5315.CrossRefGoogle Scholar
  45. 45.
    Singh, H. (2018). Hybrid structured phase mask in frequency plane for optical double image encryption in gyrator transform domain. Journal of Modern Optics, 65(18), 2065–2078.MathSciNetCrossRefGoogle Scholar
  46. 46.
    Davis, J. A., McNamara, D. E., Cottrell, D. M., & Campos, J. (2000). Image processing with the radial Hilbert transform: Theory and experiments. Optics Letters, 25(2), 99–101.CrossRefGoogle Scholar
  47. 47.
    Joshi, M., Shakher, C., & Singh, K. (2008). Image encryption and decryption using fractional Fourier transform and radial Hilbert transform. Optics and Lasers in Engineering, 46(7), 522–526.CrossRefGoogle Scholar
  48. 48.
    Morales, Y., Díaz, L., & Torres, C. (2015). Radial Hilbert transform in terms of the Fourier transform applied to image encryption. In Journal of physics: Conference series (Vol. 582, No. 1, p. 012063). IOP Publishing.Google Scholar
  49. 49.
    Joshi, M., Shakher, C., & Singh, K. (2009). Image encryption using chaos and radial Hilbert transform. In ICOP-international conference on optics and photonics. Google Scholar
  50. 50.
    Maan, P., Singh, H., & Kumari, A. C. (2017). Image encryption based on Walsh Hadamard and fractional Fourier transform using radial Hilbert mask. In 2017 international conference on computing and communication technologies for smart nation (IC3TSN), (pp. 179–183). IEEE.Google Scholar
  51. 51.
    Joshi, M., Shakher, C., & Singh, K. (2010). Image encryption using radial Hilbert transform filter bank as an additional key in the modified double random fractional Fourier encoding architecture. Optics and Lasers in Engineering, 48(5), 605–615.CrossRefGoogle Scholar

Copyright information

© 3D Research Center, Kwangwoon University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringThe NorthCap UniversityGurugramIndia
  2. 2.Department of Applied SciencesThe NorthCap UniversityGurugramIndia

Personalised recommendations