Advertisement

3D Research

, 9:47 | Cite as

Metaheuristic Techniques for Detection of Optic Disc in Retinal Fundus Images

  • Jyotika Pruthi
  • Shaveta Arora
  • Kavita Khanna
3DR Express
  • 84 Downloads
Part of the following topical collections:
  1. Medical Imaging

Abstract

Eye diseases like glaucoma and diabetic retinopathy are known to be the thieves of eye-sight that are responsible for causing the vision loss worldwide. Automatic detection of such diseases with the help of the digital color fundus photography helps in early diagnosis and treatment. From the fundus images, optic disc is required to be analyzed to diagnose the disease. In this paper, a technique has been proposed for locating optic disc through metaheuristic techniques namely Ant Colony Optimization algorithm, Bacterial Foraging Optimization, Firefly algorithm, Cuckoo Search algorithm and Krill Herd algorithm. A comparison has been made amongst all of them and also with existing disc detection techniques. The bacterial foraging algorithm has shown the best results as it has obtained 99.55% accuracy with DiaRetDB1 database, 100% accuracy with HEI-MED database, 100% with DRIVE database and 98% with STARE database.

Keywords

Ant Colony Optimization Bacterial Foraging Optimization Cuckoo Search algorithm Firefly algorithm Krill Herd algorithm Optic disc 

References

  1. 1.
    Abdullah, A. S., Özok, Y. E., & Rahebi, J. (2018). A novel method for retinal optic disc detection using bat meta-heuristic algorithm. Medical & Biological Engineering & Computing.  https://doi.org/10.1007/s11517-018-1840-1.CrossRefGoogle Scholar
  2. 2.
    Abdullah, M., Fraz, M. M., & Barman, S. A. (2016). Localization and segmentation of optic disc in retinal images using Circular Hough transform and Grow Cut algorithm. PeerJ, 4, e2003.  https://doi.org/10.7717/peerj.2003.CrossRefGoogle Scholar
  3. 3.
    Abed, S., Al-Roomi, S. A., & Al-Shayeji, M. (2016). Effective optic disc detection method based on swarm intelligence techniques and novel pre-processing steps. Applied Soft Computing, 49, 146–163.  https://doi.org/10.1016/j.asoc.2016.08.015.CrossRefGoogle Scholar
  4. 4.
    Alshayeji, M., Al-Roomi, S. A., & Abed, S. (2017). Optic disc detection in retinal fundus images using gravitational law-based edge detection. Medical & Biological Engineering & Computing, 55, 935–948.  https://doi.org/10.1007/s11517-016-1563-0.CrossRefGoogle Scholar
  5. 5.
    Aquino, A., Gegúndez-Arias, M. E., & Marín, D. (2010). Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques. IEEE Transactions on Medical Imaging, 29, 1860–1869.  https://doi.org/10.1109/TMI.2010.2053042.CrossRefGoogle Scholar
  6. 6.
    Bharkad, S. (2017). Automatic segmentation of optic disk in retinal images. Biomedical Signal Processing and Control, 31, 483–498.  https://doi.org/10.1016/j.bspc.2016.09.009.CrossRefGoogle Scholar
  7. 7.
    Das, S., Biswas, A., Dasgupta, S., & Abraham, A. (2009). Bacterial Foraging Optimization Algorithm: Theoretical foundations, analysis, and applications. Foundations of Computational Intelligence (pp. 23–55). Berlin: Springer.Google Scholar
  8. 8.
    Dorigo, M., & Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical Computer Science, 344, 243–278.  https://doi.org/10.1016/j.tcs.2005.05.020.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 26, 29–41.  https://doi.org/10.1109/3477.484436.CrossRefGoogle Scholar
  10. 10.
    Gandomi, A. H., & Alavi, A. H. (2012). Krill herd: A new bio-inspired optimization algorithm. Communications in Nonlinear Science and Numerical Simulation, 17, 4831–4845.  https://doi.org/10.1016/j.cnsns.2012.05.010.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Giancardo, L., Meriaudeau, F., Karnowski, T. P., Li, Y., Garg, S., Tobin, K. W., et al. (2012). Exudate-based diabetic macular edema detection in fundus images using publicly available datasets. Medical Image Analysis, 16, 216–226.  https://doi.org/10.1016/j.media.2011.07.004.CrossRefGoogle Scholar
  12. 12.
    Hoover, A., & Goldbaum, M. (2003). Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Transactions on Medical Imaging, 22, 951–958.  https://doi.org/10.1109/TMI.2003.815900.CrossRefGoogle Scholar
  13. 13.
    Hsiao, H., Liu, C., Yu, C.-Y., Kuo, S., & Yu, S. (2012). A novel optic disc detection scheme on retinal images. Expert Systems with Applications, 39, 10600–10606.  https://doi.org/10.1016/j.eswa.2012.02.157.CrossRefGoogle Scholar
  14. 14.
    Jing, T., Weiyu, Y. & Shengli, X. (2008). An ant colony optimization algorithm for image edge detection. In 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence). IEEE (pp. 751–756).Google Scholar
  15. 15.
    Kauppi, T., Kalesnykiene, V., Kamarainen, J-K., Lensu, L., Sorri, I., Raninen, A., Voutilainen, R., Uusitalo, H., Kalviainen, H. & Pietila, J. (2007) The DIARETDB1 diabetic retinopathy database and evaluation protocol. In Proceedings of the British Machine Vision Conference 2007. British Machine Vision Association (pp. 15.1–15.10) [accessed 2018, August 17].Google Scholar
  16. 16.
    Kavitha, G., & Ramakrishnan, S. (2010). An approach to identify optic disc in human retinal images using Ant Colony Optimization method. Journal of Medical Systems, 34, 809–813.  https://doi.org/10.1007/s10916-009-9295-4.CrossRefGoogle Scholar
  17. 17.
    Kumar, V. & Sinha, N. (2013) Automatic optic disc segmentation using maximum intensity variation. In IEEE 2013 Tencon–Spring. IEEE (pp. 29–33).Google Scholar
  18. 18.
    Mareli, M., & Twala, B. (2018). An adaptive Cuckoo search algorithm for optimisation. Applied Computing and Informatics, 14, 107–115.  https://doi.org/10.1016/j.aci.2017.09.001.CrossRefGoogle Scholar
  19. 19.
    Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9, 62–66.  https://doi.org/10.1109/TSMC.1979.4310076.CrossRefGoogle Scholar
  20. 20.
    Passino, K. M. (2002). Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Systems, 22, 52–67.  https://doi.org/10.1109/MCS.2002.1004010.CrossRefGoogle Scholar
  21. 21.
    Pereira, C., Gonçalves, L., & Ferreira, M. (2013). Optic disc detection in color fundus images using ant colony optimization. Medical & Biological Engineering & Computing, 51, 295–303.  https://doi.org/10.1007/s11517-012-0994-5.CrossRefGoogle Scholar
  22. 22.
    Rahebi, J., & Hardalaç, F. (2016). A new approach to optic disc detection in human retinal images using the firefly algorithm. Medical & Biological Engineering & Computing, 54, 453–461.  https://doi.org/10.1007/s11517-015-1330-7.CrossRefGoogle Scholar
  23. 23.
    Roychowdhury, S., Koozekanani, D. D., Kuchinka, S. N., & Parhi, K. K. (2016). Optic disc boundary and vessel origin segmentation of fundus images. IEEE Journal of Biomedical and Health Informatics, 20, 1562–1574.  https://doi.org/10.1109/JBHI.2015.2473159.CrossRefGoogle Scholar
  24. 24.
    Salazar-Gonzalez, A., Kaba, D., Li, Yongmin, & Liu, Xiaohui. (2014). Segmentation of the blood vessels and optic disk in retinal images. IEEE Journal of Biomedical and Health Informatics, 18, 1874–1886.  https://doi.org/10.1109/JBHI.2014.2302749.CrossRefGoogle Scholar
  25. 25.
    Sinthanayothin, C., Boyce, J. F., Cook, H. L., & Williamson, T. H. (1999). Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. British Journal of Ophthalmology, 83, 902–910.  https://doi.org/10.1136/bjo.83.8.902.CrossRefGoogle Scholar
  26. 26.
    Sivaprasad, S., Gupta, B., Crosby-Nwaobi, R., & Evans, J. (2012). Prevalence of diabetic retinopathy in various ethnic groups: A worldwide. Perspective, 57, 347–370.  https://doi.org/10.1016/j.survophthal.2012.01.004.CrossRefGoogle Scholar
  27. 27.
    Staal, J., Abramoff, M. D., Niemeijer, M., Viergever, M. A., & van Ginneken, B. (2004). Ridge-based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging, 23, 501–509.  https://doi.org/10.1109/TMI.2004.825627.CrossRefGoogle Scholar
  28. 28.
    Tan, J. H., Acharya, U. R., Bhandary, S. V., Chua, K. C., & Sivaprasad, S. (2017). Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network. Journal of Computational Science, 20, 70–79.  https://doi.org/10.1016/j.jocs.2017.02.006.CrossRefGoogle Scholar
  29. 29.
    Walter, T., Klein, J., Massin, P., & Erginay, A. (2002). A contribution of image processing to the diagnosis of diabetic retinopathy-detection of exudates in color fundus images of the human retina. IEEE Transactions on Medical Imaging, 21, 1236–1243.  https://doi.org/10.1109/TMI.2002.806290.CrossRefGoogle Scholar
  30. 30.
    Yang, X.-S. (2008). Nature-inspired metaheuristic algorithms. Frome: Luniver Press.Google Scholar
  31. 31.
    Yang, XS. & Deb, S. (2009) Cuckoo search via Lévy flights. In 2009 World Congress on Nature and Biologically Inspired Computing, NABIC 2009—Proceedings 210–214.  https://doi.org/10.1109/nabic.2009.5393690.
  32. 32.
    Yang, X. S., & He, X. (2013). Firefly algorithm: recent advances and applications. International Journal of Swarm Intelligence, 1, 36.  https://doi.org/10.1504/IJSI.2013.055801.CrossRefGoogle Scholar
  33. 33.
    Zuiderveld, K. (1994). Contrast limited adaptive histogram equalization. Graphics gems (pp. 474–485). Amsterdam: Elsevier.CrossRefGoogle Scholar

Copyright information

© 3D Research Center, Kwangwoon University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Deparment of Computer Science and EngineeringThe NorthCap UniversityGurgaonIndia
  2. 2.Deparment of Electrical, Electronics and Communication EngineeringThe NorthCap UniversityGurgaonIndia

Personalised recommendations