3D Research

, 9:10 | Cite as

A Novel Image Encryption Scheme Based on Intertwining Chaotic Maps and RC4 Stream Cipher

3DR Express
  • 60 Downloads

Abstract

As the systems are enabling us to transmit large chunks of data, both in the form of texts and images, there is a need to explore algorithms which can provide a higher security without increasing the time complexity significantly. This paper proposes an image encryption scheme which uses intertwining chaotic maps and RC4 stream cipher to encrypt/decrypt the images. The scheme employs chaotic map for the confusion stage and for generation of key for the RC4 cipher. The RC4 cipher uses this key to generate random sequences which are used to implement an efficient diffusion process. The algorithm is implemented in MATLAB-2016b and various performance metrics are used to evaluate its efficacy. The proposed scheme provides highly scrambled encrypted images and can resist statistical, differential and brute-force search attacks. The peak signal-to-noise ratio values are quite similar to other schemes, the entropy values are close to ideal. In addition, the scheme is very much practical since having lowest time complexity then its counterparts.

Keywords

Intertwining chaotic map RC4 Image encryption/decryption Statistical/differential attacks Diffusion 

References

  1. 1.
    Anuradha, K., & Naik, P. P. S. (2015). Medical image cryptanalysis using histogram matching bitplane and adjoin mapping algorithms. International Journal and Magazine of Engineering, Technology, Management and Research, 2, 100–105. http://www.ijmetmr.com/oloctober2015/KolakaluriAnuradha-PPeddaSadhuNaik-13.pdf.
  2. 2.
    Bansal, R., Gupta, S., & Sharma, G. (2016). An innovative image encryption scheme based on chaotic map and Vigenère scheme. Multimedia Tools and Applications.  https://doi.org/10.1007/s11042-016-3926-9.Google Scholar
  3. 3.
    Baptista, M. S. (1998). Cryptography with chaos. Physics Letters A, 240, 50–54. http://cmup.fc.up.pt/cmup/murilo.baptista/baptista_PLA1998.pdf.
  4. 4.
    Barker, W. C., & Barker, E. (2012). Recommendation for the triple data encryption algorithm (TDEA) block cipher. National Institute of Standards and Technology. Special Publication, 800–867. http://dx.doi.org/10.6028/NIST.SP.800-67r1
  5. 5.
    Basu, S. (2011). International data encryption algorithm (IDEA)—A typical illustration. Journal of Global Research in Computer Science, 2, 116–118. http://www.rroij.com/open-access/international-data-encryption-algorithm-idea-a-typical-illustration-116-118.pdf.
  6. 6.
    Biham, E., & Shamir, A. (1993). Differential cryptanalysis of the data encryption standard. Springer-Verlag. http://www.cs.technion.ac.il/~biham/Reports/differential-cryptanalysis-of-the-data-encryption-standard-biham-shamir-authors-latex-version.pdf.
  7. 7.
    Biryukov, A., & Kushilevitz, E. (1998). Improved cryptanalysis of RC5. In K. Nyberg (Ed.), Advances in cryptology—EUROCRYPT’98. EUROCRYPT 1998. Lecture notes in computer science (Vol. 1403). Berlin: Springer.  https://doi.org/10.1007/bfb0054119.Google Scholar
  8. 8.
    Chang, C. C., Hwang, M. S., & Chen, T. S. (2001). A new encryption algorithm for image cryptosystems. Journal of Systems and Software, 58, 83–91.  https://doi.org/10.1016/S0164-1212(01)00029-2.CrossRefGoogle Scholar
  9. 9.
    Chen, G., Mao, Y., & Chui, C. K. (2004). A symmetric image encryption based on 3D chaotic maps. Chaos, Solitons & Fractals, 21, 749–761.  https://doi.org/10.1016/j.chaos.2003.12.022.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Dang, P. P., & Chau, P. M. (2000). Image encryption for secure internet multimedia applications. IEEE Transactions on Consumer Electronics, 46, 395–403.  https://doi.org/10.1109/30.883383.CrossRefGoogle Scholar
  11. 11.
    Ferguson, N., et al. (2001). Improved cryptanalysis of Rijndael. In G. Goos, J. Hartmanis, J. van Leeuwen, & B. Schneier (Eds.), Fast software encryption. FSE 2000. Lecture notes in computer science (Vol. 1978). Berlin: Springer.  https://doi.org/10.1007/3-540-44706-7_15.Google Scholar
  12. 12.
    François, M., Grosges, T., Barchiesi, D., & Erra, R. (2012). A new image encryption scheme based on a chaotic function. Signal Processing: Image Communication, 27, 249–259.  https://doi.org/10.1016/j.image.2011.11.003.MATHGoogle Scholar
  13. 13.
    Gao, T., & Chen, Z. (2008). A new image encryption algorithm based on hyper-chaos. Physics Letters A, 372, 394–400.  https://doi.org/10.1016/j.physleta.2007.07.040.CrossRefMATHGoogle Scholar
  14. 14.
    Hanchinamani, G., & Kulkarni, L. (2015). An efficient image encryption scheme based on a Peter De Jong chaotic map and a RC4 stream cipher. 3D. Research, 6, 30.  https://doi.org/10.1007/s13319-015-0062-7.Google Scholar
  15. 15.
    Jawad, L. M., & Sulong, G. (2015). Chaotic map-embedded Blowfish algorithm for security enhancement of colour image encryption. Nonlinear Dynamics, 81(4), 2079–2093.  https://doi.org/10.1007/s11071-015-2127-9.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Jianquan, X., Chunhua, Y., Qing, X., Lijun, T. (2009). An encryption algorithm based on transformed logistic map. In International conference on networks security, wireless communications and trusted computing (pp. 111–114).  https://doi.org/10.1109/nswctc.2009.201.
  17. 17.
    Karuvandan, V., Chellamuthu, S., & Periyasamy, S. (2016). Cryptanalysis of AES-128 and AES-256 block ciphers using Lorenz information measure. The International Arab Journal of Information Technology, 13, 306–312. http://ccis2k.org/iajit/PDF/Vol.13,%20No.3/5373.pdf.
  18. 18.
    Knudsen, L. R., & Meier, W. (2001). Correlations in RC6 with a reduced number of rounds. In G. Goos, J. Hartmanis, J. van Leeuwen, & B. Schneier (Eds.), Fast software encryption. FSE 2000. Lecture notes in computer science (Vol. 1978). Berlin: Springer.  https://doi.org/10.1007/3-540-44706-7_7.Google Scholar
  19. 19.
    Kocarev, L., & Lian, S. (2011). Chaos based cryptography theory algorithms and applications. Springer-Verlag.  https://doi.org/10.1007/978-3-642-20542-2.MATHGoogle Scholar
  20. 20.
    Kumar, S., & Sharma, R. K. (2016). Securing color images using two-square cipher associated with Arnold map. Multimedia Tools and Applications.  https://doi.org/10.1007/s11042-016-3504-1.Google Scholar
  21. 21.
    Kumara, M., Mishra, D. C., & Sharma, R. K. (2014). A first approach on an RGB image encryption. Journal of Optics and Lasers in Engineering, 52, 27–34.CrossRefGoogle Scholar
  22. 22.
    Li, C., Li, S., Asim, M., Nunez, J., Alvarez, G., & Chen, G. (2009). On the security defects of an image encryption scheme. Image and Vision Computing, 27, 1371–1381.  https://doi.org/10.1016/j.imavis.2008.12.008.CrossRefGoogle Scholar
  23. 23.
    Liu, F., & Liu, Y. (2016). Research on image encryption based on Lorenz chaotic mapping in finite field. International Journal of Hybrid Information Technology, 9(10), 281–288.  https://doi.org/10.14257/ijhit.2016.9.10.28.CrossRefGoogle Scholar
  24. 24.
    Liu, L., & Miao, S. (2016). A new image encryption algorithm based on logistic chaotic map with varying parameter. SpringerPlus, 5, 289.  https://doi.org/10.1186/s40064-016-1959-1.CrossRefGoogle Scholar
  25. 25.
    Liu, Z., Guo, Q., Xu, L., Ahmad, M. A., & Liu, S. (2010). Double image encryption by using iterative random binary encoding in gyrator domains. Optics Express, 18, 12033–12043.  https://doi.org/10.1364/OE.18.012033.CrossRefGoogle Scholar
  26. 26.
    Lucks, S. (1998). Attacking triple encryption. In S. Vaudenay (Ed.), Fast software encryption. FSE 1998. Lecture notes in computer science (Vol. 1372). Berlin: Springer.  https://doi.org/10.1007/3-540-69710-1_16.Google Scholar
  27. 27.
    Matthews, R. (1989). On the derivation of a “chaotic” encryption algorithm. Cryptologia, 14, 29–42.  https://doi.org/10.1080/0161-118991863745.MathSciNetCrossRefGoogle Scholar
  28. 28.
    Mishra, D. C., & Sharma, R. K. (2016). An approach for security of color image data in coordinate, geometric, and frequency domains. Journal Information Security Journal: A Global Perspective, 25(4–6), 213–234.Google Scholar
  29. 29.
    Mishra, D. C., Sharma, R. K., Suman, S., & Prasad, A. (2017). Multi-layer security of color image based on chaotic system combined with RP2DFRFT and Arnold transform. Journal of Information Security and Applications, 37, 65–90.CrossRefGoogle Scholar
  30. 30.
    Mousa, A., & Hamad, A. (2006). Evaluation of the RC4 algorithm for data encryption. International Journal of Computer Science & Applications, 3, 44–56. http://www.tmrfindia.org/ijcsa/v3i24.pdf.
  31. 31.
    Pareek, N. K., Patidar, V., & Sud, K. K. (2003). Discrete chaotic cryptography using external key. Physics Letters A, 309, 75–82.  https://doi.org/10.1016/S0375-9601(03)00122-1.MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Pareek, N. K., Patidar, V., & Sud, K. K. (2006). Image encryption using chaotic logistic map. Image and Vision Computing, 24, 926–934.  https://doi.org/10.1016/j.imavis.2006.02.021.CrossRefGoogle Scholar
  33. 33.
    Rehman, A. U., Khan, J. S., Ahmad, J., & Hwang, S. O. (2016). A new image encryption scheme based on dynamic S-boxes and chaotic maps. 3D Research, 7(7), 7.  https://doi.org/10.1007/s13319-016-0084-9.CrossRefGoogle Scholar
  34. 34.
    Rivest, R. L. (1995). RC5 encryption algorithm. Dr Dobb’s Journal, 226, 146–148. http://www.drdobbs.com/security/the-rc5-encryption-algorithm/184409480.
  35. 35.
    Rivest, R. L., & Schuldt, J. C. N. (2014). Spritz—a spongy RC4-like stream cipher and hash function. In Proceedings of the Charles River Crypto Day, Palo Alto, CA, USA. https://people.csail.mit.edu/rivest/pubs/RS14.pdf.
  36. 36.
    Sam, I. S., Devaraj, P., & Bhuvaneswaran, R. S. (2012). A novel image cipher based on mixed transformed logistic maps. Multimedia Tools and Applications, 56, 315–330.  https://doi.org/10.1007/s11042-010-0652-6.CrossRefGoogle Scholar
  37. 37.
    Sam, I. S., Devaraj, P., & Bhuvaneswaran, R. S. (2012). An intertwining chaotic maps based image encryption scheme. Nonlinear Dynamics, 69, 1995–2007.  https://doi.org/10.1007/s11071-012-0402-6.MathSciNetCrossRefGoogle Scholar
  38. 38.
    Scharinger, J. (1998). Fast encryption of image data using chaotic Kolmogorov flows. Journal of Electronic Engineering, 7, 318–325.  https://doi.org/10.1117/1.482647.Google Scholar
  39. 39.
    Schneier, B. (1994). The Blowfish encryption algorithm. Dr. Dobb’s Journal, 19, 38–40. http://www.drdobbs.com/security/the-blowfish-encryption-algorithm/184409216.
  40. 40.
    Shimoyama, T., Takenaka, M., & Koshiba, T. (2002). Multiple linear cryptanalysis of a reduced round RC6. In J. Daemen & V. Rijmen (Eds.), Fast software encryption. FSE 2002. Lecture notes in computer science (Vol. 2365). Berlin: Springer.  https://doi.org/10.1007/3-540-45661-9_6.Google Scholar
  41. 41.
    Solak, E., Çokal, C., Yildiz, O. T., & Biyikoğlu, T. (2010). Cryptanalysis of Fridrich’s chaotic image encryption. International Journal of Bifurcation and Chaos, 10, 1405–1413.  https://doi.org/10.1142/S0218127410026563.MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Tayal, N., Bansal, R., Gupta, S., & Dhall, S. (2016). Analysis of various cryptography techniques: A survey. International Journal of Security and Its Applications, 10, 59–92.  https://doi.org/10.14257/ijsia.2016.10.8.07.CrossRefGoogle Scholar
  43. 43.
  44. 44.
    Ye, G. (2010). Image scrambling encryption algorithm of pixel bit based on chaos map. Pattern Recognition Letters, 31, 347–354.  https://doi.org/10.1016/j.patrec.2009.11.008.CrossRefGoogle Scholar
  45. 45.
    Yoon, J. W., & Kim, H. (2010). An image encryption scheme with a pseudorandom permutation based on chaotic maps. Communications in Nonlinear Science and Numerical Simulation, 15, 3998–4006.  https://doi.org/10.1016/j.cnsns.2010.01.041.MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Younes, M. A. B., & Jantan. A. (2008). Image encryption using block-based transformation algorithm. International Journal of Computer Science, 35, 407–415. http://www.iaeng.org/IJCS/issues_v35/issue_1/IJCS_35_1_03.pdf.
  47. 47.
    Yu, X. Y., Zhang, J., Ren, H. E., Xu, G. S., & Luo, X. Y. (2006). Chaotic image scrambling algorithm based on S-DES. Journal of Physics: Conference Series, 48, 349–353.  https://doi.org/10.1088/1742-6596/48/1/065.Google Scholar
  48. 48.
    Yun-peng, Z., Zheng-jun, Z., Wei, L., Xuan, N., Shui-ping, C., & Wei-di. D. (2009). Digital image encryption algorithm based on chaos and improved DES. In IEEE international conference on systems, man, and cybernetics (pp. 474–479).  https://doi.org/10.1109/icsmc.2009.5346839.
  49. 49.
    Zeghid, M., Machhout, M., Khriji, L., Baganne, A., & Tourki, R. (2007). A modified AES based algorithm for image encryption. International Journal of Computer, Electrical, Automation, Control and Information Engineering, 1, 745–750. http://scholar.waset.org/1307-6892/7580.
  50. 50.
    Zhang, G., & Liu, Q. (2011). A novel image encryption method based on total shuffling scheme. Optics Communications, 284, 2775–2780.  https://doi.org/10.1016/j.optcom.2011.02.039.CrossRefGoogle Scholar
  51. 51.
    Zhang, Y., Xiao, D., Wen, W., et al. (2014). Cryptanalysis of image scrambling based on chaotic sequences and Vigenère cipher. Nonlinear Dynamics, 78, 235.  https://doi.org/10.1007/s11071-014-1435-9.MathSciNetCrossRefGoogle Scholar

Copyright information

© 3D Research Center, Kwangwoon University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics EngineeringYMCA University of Science and TechnologyFaridabadIndia

Personalised recommendations