3D Research

, 8:26 | Cite as

A Novel Image Encryption Based on Algebraic S-box and Arnold Transform

  • Shabieh Farwa
  • Nazeer Muhammad
  • Tariq Shah
  • Sohail Ahmad
3DR Express
  • 127 Downloads

Abstract

Recent study shows that substitution box (S-box) only cannot be reliably used in image encryption techniques. We, in this paper, propose a novel and secure image encryption scheme that utilizes the combined effect of an algebraic substitution box along with the scrambling effect of the Arnold transform. The underlying algorithm involves the application of S-box, which is the most imperative source to create confusion and diffusion in the data. The speciality of the proposed algorithm lies, firstly, in the high sensitivity of our S-box to the choice of the initial conditions which makes this S-box stronger than the chaos-based S-boxes as it saves computational labour by deploying a comparatively simple and direct approach based on the algebraic structure of the multiplicative cyclic group of the Galois field. Secondly the proposed method becomes more secure by considering a combination of S-box with certain number of iterations of the Arnold transform. The strength of the S-box is examined in terms of various performance indices such as nonlinearity, strict avalanche criterion, bit independence criterion, linear and differential approximation probabilities etc. We prove through the most significant techniques used for the statistical analyses of the encrypted image that our image encryption algorithm satisfies all the necessary criteria to be usefully and reliably implemented in image encryption applications.

Keywords

S-box Galois field GF(28Primitive element Arnold transform Image encryption 

References

  1. 1.
    Shannon, C. E. (1949). Communication theory of secrecy systems. Bell Systems Technical Journal, 28, 656–715.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Biham, E., & Shamir, A. (1991). Differential cryptanalysis of DES-like cryptosystems. Journal of Cryptology, 4(1), 3–72.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Matsui, M. (1998). Linear cryptanalysis method for DES cipher. Proceedings of EUROCRYPT’93 (pp. 386–397). Berlin: Springer.Google Scholar
  4. 4.
    Kim, J., & Phan, R. C. W. (2009). Advanced differential-style crypt-analysis of the NSA’s skipjack block cipher. Cryptologia, 33(3), 246–270.MATHCrossRefGoogle Scholar
  5. 5.
    Hussain, I., Shah, T., Gondal, M. A., Khan, W. A., & Mahmood, H. (2013). A group theoretic approach to construct cryptographically strong substitution boxes. Neural Computing and Applications, 23(1), 97–104.CrossRefGoogle Scholar
  6. 6.
    Farwa, S., Shah, T., & Idrees, L. (2016). A highly nonlinear S-box based on a fractional linear transformation. SpringerPlus, 5, 1658.CrossRefGoogle Scholar
  7. 7.
    Xu, Z. H., Shen, G., & Lin, S. (2011). Image encryption algorithm based on chaos and S-boxes scrambling. Advance Materials Research, 171172, 299304.Google Scholar
  8. 8.
    Rehman, A. U., Khan, J. S., & Ahmad, J. (2016). A New Image Encryption Scheme Based on Dynamic S-Boxes and Chaotic Maps. 3D Research, 7, 7.CrossRefGoogle Scholar
  9. 9.
    Jamal, S. S., Khan, M. U., & Shah, T. (2016). A watermarking technique with chaotic fractional S-box transformation. Wireless Personal Communications, 90(4), 2033–2049.CrossRefGoogle Scholar
  10. 10.
    Zhang, Y., & Xiao, D. (2013). Cryptanalysis of S-box-only chaotic image ciphers against chosen plaintext attack. Nonlinear Dynamics, 72(4), 751756.MathSciNetGoogle Scholar
  11. 11.
    Ahmad, M., Chugh, H., & Goel, A. (2013). A chaos based method for efficient cryptographic S-box design. International Symposium on Security in Computing and Communications., 377, 130–137.CrossRefGoogle Scholar
  12. 12.
    Ahmad, J., & Hwang, S. O. (2016). A secure image encryption scheme based on chaotic maps and affine transformation. Multimedia Tools and Applications, 75(21), 13951–13976.CrossRefGoogle Scholar
  13. 13.
    Ahmad, J., Hwang, S. O., & Ali, A. (2015). An experimental comparison of chaotic and non-chaotic image encryption schemes. Wireless Personal Communications, 84(2), 118.CrossRefGoogle Scholar
  14. 14.
    Gondal, M. A., Raheem, A., & Hussain, I. A. (2014). Scheme for obtaining secure S-boxes based on chaotic Bakers map. 3D Research, 5, 17.CrossRefGoogle Scholar
  15. 15.
    Ozkayanak, F., & Ozer, A. B. (2010). A method for designing stron S-boxes based on chaotic Lorenz system. Physics Letters A, 374(36), 3733–3738.MATHCrossRefGoogle Scholar
  16. 16.
    Khan, M., Shah, T., Mahmood, H., & Gondal, M. A. (2013). An efficient method for the construction of block cipher with multi-chaotic systems. Nonlinear Dynamics, 71(3), 489–492.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Webster, A. F., & Tavares, S. E. (1986). Proceedings of CRYPTO’85., On the design of s-boxes, advances in cryptology Berlin: Springer.Google Scholar
  18. 18.
    Muhammad, N., Bibi, N., & Kim, D. G. (2013). A fresnelet-based encryption of medical images using Arnold transform. International Journal of Advanced Computer Science and Applications, A 1(1), 131140.Google Scholar
  19. 19.
    Liu, Z., Xu, L., Liu, T., Chen, H., Li, P., Lin, C., et al. (2011). Color image encryption by using Arnold transform and color-blend operation in discrete cosine transform domains. Optics Communications, 284, 123–128.CrossRefGoogle Scholar
  20. 20.
    Liu, Z., Chen, H., Liu, T., Li, P., Xu, L., Dai, J., et al. (2011). Image encryption by using gyrator transform and Arnold transfom. Journal of Electronic Imaging, 20(1), 013020.CrossRefGoogle Scholar
  21. 21.
    Anees, A., Siddiqui, A. M., & Ahmed, F. (2014). Chaotic substitution for highly autocorrelated data in encryption algorithm. Communications in Nonlinear Science and Numerical Simulation, 19(9), 31063118.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Wang, D., & Zhang, Y. B. (2009). Image encryption algorithm based on S-box sustitution and chaose random sequence, In: International Conference on Computer aided Modeling and Simulation. (pp. 110–113) Guangzhou, China.Google Scholar
  23. 23.
    Ravichandran, D., Praveenkumar, P., Rayappan, J. B. B., & Amirtharajan, R. (2016). Chaos based crossover and mutation for securing. DICOM Image, 72, 170–184.Google Scholar
  24. 24.
    Wu, Y., Zhou, Y., Saveriades, G., Agaian, S., Noonan, J. P., & Natarajan, P. (2013). Local Shannon entropy measure with statistical tests for image randomness. Information Sciences, 222, 323–342.MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Hussain, I., Azam, N., & Shah, T. (2014). Stego optical encryption based on chaotic S-box transformation. Optics and Laser Technology, 61, 50–56.CrossRefGoogle Scholar
  26. 26.
    Wang, Y., Wong, K. W., Liao, X., & Chen, G. (2011). A new chaos-based fast image encryption algorithm. Applied Soft Computing, 11(1), 514522.Google Scholar

Copyright information

© 3D Research Center, Kwangwoon University and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Shabieh Farwa
    • 1
  • Nazeer Muhammad
    • 1
  • Tariq Shah
    • 2
  • Sohail Ahmad
    • 1
  1. 1.Department of MathematicsCOMSATS Institute of Information TechnologyWah CanttPakistan
  2. 2.Department of MathematicsQuaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations