3D Research

, 8:22 | Cite as

A New Parametric Kernel Estimation Technique for License Plate Image De-blurring

3DR Express

Abstract

A recognizable license plate in a picture taken by a traffic monitoring system is crucial for identifying the vehicles involved in traffic violations. In the image of a vehicle taken by a surveillance camera, the license plate is often blurred due to fast motion and cannot be recognized by the human eye. In this type of blurring, the blur kernel can be seen to be a linear uniform convolution parametrically described by its angle and length. In this paper, we introduce a new estimation technique to determine this kernel accurately in order to improve our de-blurred result. We use the Hough transform in estimating the direction in which the image is blurred. To determine the extent of the blur in that direction, we employ a new method involving the cepstrum of the blurred image. We compare the performance of our method to that of other recent blind de-blurring techniques. These comparisons show that our proposed scheme can handle significant blur in the captured image to give a good output image.

Keywords

Motion kernel Blur angle Blur length Hough transform Cepstral transform Point spread function Optical transfer function Ground truth Blind image de-blurring 

References

  1. 1.
    Zhou, W., Li, H., Lu, Y., & Tian, Q. (2012). Principle visual word discovery for automatic license plate detection. IEEE Transactions on Image Processing, 21(9), 4269–4279.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Zhou, W., Lu, Y., Li, H., Song, Y., & Tian, Q. (2016). Spatial coding for large scale partial-duplicate Web image search. In Proceedings of the 18th ACM International Conference on Multimedia (pp. 511–520).Google Scholar
  3. 3.
    Zhou, W., Li, H., Hong, R., Lu, Y., & Tian, Q. (2015). BSIFT: Toward data-independent codebook for large scale image search. IEEE Transactions on Image Processing, 24(3), 967–979.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Zhou, W., Yang, M., Li, H., Wang, X., Lin, Y., & Tian, Q. (2014). Towards codebook-free: Scalable cascaded hashing for mobile image search. IEEE Transactions on Multimedia, 16(3), 601–611.CrossRefGoogle Scholar
  5. 5.
    Cho, S., & Lee, S. (2009). Fast motion de-blurring. ACM Transactions on Graphics, 28(5), 145.CrossRefGoogle Scholar
  6. 6.
    Shan, Q., Jia, J., & Agarwala, A. (2008). High-quality motion de-blurring from a single image. ACM Transactions on Graphics, 27(3), 73.CrossRefGoogle Scholar
  7. 7.
    Xu, L., Zheng, S. & Jia, J. (2013). Unnatural sparse representation for natural image de-blurring. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1107–1114).Google Scholar
  8. 8.
    Cho, H., Wang, J., & Lee, S. (2012). Text image de-blurring using text-specific properties. In Proceedings of the European conference on computer vision (pp. 524–537).Google Scholar
  9. 9.
    Xu, L., & Jia, J. (2010). Two-phase kernel estimation for robust motion de-blurring. In Proceedings of the European conference on computer vision (pp. 157–170).Google Scholar
  10. 10.
    Levin, A., Weiss, Y., Durand, F., & Freeman, W. T. (2011). Understanding blind deconvolution algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(12), 2354–2367.CrossRefGoogle Scholar
  11. 11.
    Oliveira, J. P., Figueiredo, M. A. T., & Bioucas-Dias, J. M. (2014). Parametric blur estimation for blind restoration of natural images: Linear motion and out-of-focus. IEEE Transactions on Image Processing, 23(1), 466–477.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fergus, R., Singh, B., Hertzmann, A., Roweis, S. T., & Freeman, W. T. (2006). Removing camera shake from a single photograph. ACM Transactions on Graphics, 25(3), 787–794.CrossRefGoogle Scholar
  13. 13.
    Lu, Q., Zhou, W., Fang, L., & Li, H. (2016). Robust blur kernel estimation for license plate images from fast moving vehicles. IEEE Transactions on Image Processing, 25(5), 2311–2323.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Whyte, O., Sivic, J., Zisserman, A., & Ponce, J. (2012). Non-uniform deblurring for shaken images. International Journal of Computer Vision, 98(2), 168–186.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Gupta, A., Joshi, N., Zitnick, C. L., Cohen, M., & Curless, B. (2010) Single image deblurring using motion density functions. In Proceedings of the 11th European conference on computer vision (pp. 171–184).Google Scholar
  16. 16.
    Zheng, S., Xu, L., & Jia, J. (2013). Forward motion deblurring. In Proceedings of the IEEE international conference on computer vision (pp. 1465–1472).Google Scholar
  17. 17.
    Tiwari, S., Shukla, V. P., Singh, A. K., & Biradar, S. R. (2013). Review of motion blur estimation techniques. Journal of Image and Graphics, 1(4), 176–184.Google Scholar
  18. 18.
    Gonzalez, R. C., & Woods, R. E. (2007). Digital Image Processing. Englewood Cliffs: Prentice Hall.Google Scholar
  19. 19.
    Hartley, R., & Zisserman, A. (2004). Multiple view geometry in computer vision (2nd ed.). Cambridge: Cambridge University Press.MATHCrossRefGoogle Scholar
  20. 20.
    Krishnan, D., Tay, T., & Fergus, R. (2011). Blind deconvolution using a normalized sparsity measure. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 233–240).Google Scholar
  21. 21.
    Cai, J. F., Ji, H., Liu, C., & Shen, Z. (2012). Framelet based blind motion deblurring from a single image. IEEE Transactions on Image Processing, 21(2), 562–572.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Chang, C. C., & Lin, C. J. (2016). A library for support vector machines. Available at: http://www.csie.ntu.edu.tw/~cjlin/libsvm.
  23. 23.
    Oliveira, J. P., Figueiredo, M. A. T., & Bioucas-Dias, J. M. (2007). Blind estimation of motion blur parameters for image deconvolution. In Proceedings of the 3rd Iberian conference on pattern recognition and image analysis (pp. 604–611).Google Scholar
  24. 24.
    Zeng, N., Zhang, H., Li, Y., Liang, J., & Dobaie, A. M. (2017). Denoising and deblurring gold immunochromatographic strip images via gradient projection algorithms. Journal of Neurocomputing, 247, 165–172.CrossRefGoogle Scholar
  25. 25.
    Zeng, N., Wang, Z., Zhang, H., Liu, W., & Alsaadi, F. E. (2016). Deep belief networks for quantitative analysis of a gold immunochromatographic strip. Journal of Cognitive Computation, 8(4), 684–692.CrossRefGoogle Scholar
  26. 26.
    Zeng, N., Wang, Z., Zineddin, B., Li, Y., Du, M., Xiao, L., et al. (2014). Image-based quantitative analysis of gold immunochromatographic strip via cellular neural network approach. IEEE Transactions on Medical Imaging, 33(5), 1129–1136.CrossRefGoogle Scholar

Copyright information

© 3D Research Center, Kwangwoon University and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Vellore Institute of TechnologyVelloreIndia

Personalised recommendations