Advertisement

3D Research

, 8:2 | Cite as

Simplification of 3D Graphics for Mobile Devices: Exploring the Trade-off Between Energy Savings and User Perceptions of Visual Quality

  • Jarkko Vatjus-Anttila
  • Timo Koskela
  • Tuomas Lappalainen
  • Jonna Häkkilä
3DR Express

Abstract

3D graphics have quickly become a popular form of media that can also be accessed with today’s mobile devices. However, the use of 3D applications with mobile devices is typically a very energy-consuming task due to the processing complexity and the large file size of 3D graphics. As a result, their use may lead to rapid depletion of the limited battery life. In this paper, we investigate how much energy savings can be gained in the transmission and rendering of 3D graphics by simplifying geometry data. In this connection, we also examine users’ perceptions on the visual quality of the simplified 3D models. The results of this paper provide new knowledge on the energy savings that can be gained through geometry simplification, as well as on how much the geometry can be simplified before the visual quality of 3D models becomes unacceptable for the mobile users. Based on the results, it can be concluded that geometry simplification can provide significant energy savings for mobile devices without disturbing the users. When geometry simplification is combined with distance based adjustment of detail, up to 52% energy savings were gained in our experiments compared to using only a single high quality 3D model.

Graphical Abstract

Keywords

Mobile Geometry Three-dimensional Energy consumption Rendering User experience 

Notes

Acknowledgements

This work has been supported by the CADIST3D project (268905) funded by the Academy of Finland. In addition, the Strategic Research Council at the Academy of Finland is acknowledged for financial support of the COMBAT project (293389).

References

  1. 1.
    Akenine-Möller, T., & Johnsson, B. (2012). Performance per what? Journal of Computer Graphics Techniques, 1, 37–41.Google Scholar
  2. 2.
    Assarsson, U., & Moller, T. (2000). Optimized view frustum culling algorithms for bounding boxes. Journal of Graphics Tools, 5, 9–22. doi: 10.1080/10867651.2000.10487517.CrossRefGoogle Scholar
  3. 3.
    Atlan, S., & Garland, M. (2006). Interactive multiresolution editing and display of large terrains. Computer Graphics Forum, 25(2), 211–223. doi: 10.1111/j.1467-8659.2006.00936.x.CrossRefGoogle Scholar
  4. 4.
    Balasubramanian, N., Balasubramanian, A., & Venkataramani, A. (2009). Energy consumption in mobile phones In Proceedings of the 9th ACM SIGCOMM conference on internet measurement conference—IMC’09 (p. 14). New York: ACM. doi: 10.1145/1644893.1644927.
  5. 5.
    Belleville, M., Cantatore, E., Fanet, H., Fiorini, P., Nicole, P., Pelgrom, M., et al. (2009). Energy autonomous systems: Future trends in devices, technology, and systems. Paris: Catrene.Google Scholar
  6. 6.
    Bulbul, A., Capin, T., Lavoue, G., & Preda, M. (2011). Assessing visual quality of 3-D polygonal models. Signal Processing Magazine, 28, 80–90. doi: 10.1109/MSP.2011.942466.CrossRefGoogle Scholar
  7. 7.
    Chang, R., Butkiewicz, T., Ziemkiewicz, C., Wartell, Z., Pollard, N., & Ribarsky, W. (2008). Leglible simplification of textured urban models. IEEE Computer Graphics and Applicatons. doi: 10.1109/MCG.2008.56.Google Scholar
  8. 8.
    Dmitriev, K., & Makarov, E. (2011). Generating Displacement from Normal Map for use in 3D Games In Proceedings of ACM SIGGRAPH 2011 Talks. New York: ACM, Vancouver.Google Scholar
  9. 9.
    Gil, B., & Trezentos, P. (2011). Impacts of data interchange formats on energy consumption and performance in smart phones, In Workshop on open source and design of communication—OSDOC’11 (pp. 1–6). New York: ACM.Google Scholar
  10. 10.
    GSMARENA. (2014). Samsung S5 [WWW Document]. http://www.gsmarena.com/samsung_galaxy_s5-6033.php.
  11. 11.
    GSMARENA. (2013). Samsung S2+ [WWW Document]. http://www.gsmarena.com/samsung_i9105_galaxy_s_ii_plus-5213.php.
  12. 12.
    GSMARENA. (2012). Samsung S3 [WWW Document]. http://www.gsmarena.com/samsung_i9300_galaxy_s_iii-4238.php.
  13. 13.
    GSMARENA. (2011). Samsung S2 [WWW Document]. http://www.gsmarena.com/samsung_i9100_galaxy_s_ii-3621.php.
  14. 14.
    Heikkinen, M.V.J., & Nurminen, J.K. (2010). Consumer attitudes towards energy consumption of mobile phones and services, In 2010 IEEE 72nd vehicular technology conference—Fall (pp. 1–5). Piscataway, NJ: IEEE. doi: 10.1109/VETECF.2010.5594115.
  15. 15.
    Hoppe, H. (1996). Progressive meshes, In Proceedings of the 23rd annual conference on computer graphics and interactive techniques—SIGGRAPH’96 (pp. 99–108). New York: ACM.Google Scholar
  16. 16.
    Hosseini, M., Fedorova, A., Peters, J., & Shirmohammadi, S. (2012). Energy-aware adaptations in mobile 3D graphics, In 20th ACM international conference on multimedia (pp. 1017–1020). Nara.Google Scholar
  17. 17.
    Huang, J., Quian, F., Gerber, A., Mao, Z. M., Sen, S., & Spatscheck, O. (2012). A close examination of performance and power characteristics of 4G LTE networks. MobiSys. doi: 10.1145/2307636.2307658.Google Scholar
  18. 18.
    Huang, J., Quian, F., Guo, Y., Zhou, Y., Xu, Q., Mao, Z.M., Sen, S., & Spatscheck, O. (2013). An in-depth study of LTE: Effect of network protocol and application behavior on performance, In SIGCOMM (pp. 363–374).Google Scholar
  19. 19.
    Ickin, S., Wac, K., Fiedler, M., Janowski, L., Hong, J.-H., & Dey, A. K. (2012). Factors influencing quality of experience of commonly used mobile applications. IEEE Communications Magazine, 50, 48–56. doi: 10.1109/MCOM.2012.6178833.CrossRefGoogle Scholar
  20. 20.
    Johnsson, B., & Akenine-Möller, T. (2015). A performance and energy evaluation of many-light rendering algorithms. The Visual Computer, 31, 1671–1681.CrossRefGoogle Scholar
  21. 21.
    Johnsson, B., & Akenine-Möller, T. (2014). Measuring per-frame energy consumption of real-time graphics applications. Journal of Computer Graphics Techniques, 3, 60–73.Google Scholar
  22. 22.
    Koskela, T., & Vatjus-Anttila, J. (2015). Optimization techniques for 3D graphics deployment on mobile devices. 3D Research 6. doi: 10.1007/s13319-015-0040-0.
  23. 23.
    Koulieris, G.A., Drettakis, G., Cunningham, D., & Mania, K. (2014). C-LOD: Context-aware material level-of-detail applied to mobile graphics. Computer Graphics Forum 33, No. 4.Google Scholar
  24. 24.
    Kularatna, N. (2011). Rechargeable batteries and their management. IEEE Instrumentation and Measurement Magazine, 14, 20–33. doi: 10.1109/MIM.2011.5735252.CrossRefGoogle Scholar
  25. 25.
    Lavoué, G., Chevalier, L., & Dupont, F. (2013). Streaming compressed 3D data on the web using JavaScript and WebGL, In: 18th international conference on 3D web technology (pp. 19–27) San Sebastian.Google Scholar
  26. 26.
    Lavoue, G., & Corsini, M. (2010). A comparison of perceptually-based metrics for objective evaluation of geometry processing. IEEE Transactions on Multimedia, 12, 636–649. doi: 10.1109/TMM.2010.2060475.CrossRefGoogle Scholar
  27. 27.
    Lefohn, A. E., Sengupta, S., & Owens, J. D. (2007). Resolution-matched shadow maps. Graph: ACM Transactions. 26.Google Scholar
  28. 28.
    Limper, M., Jung, Y., Behr, J., & Alexa, M. (2013). The POP buffer: Rapid progressive clustering by geometry quantization. Computer Graphics Forum, 21, 197–206.CrossRefGoogle Scholar
  29. 29.
    Ma, X., Deng, Z., Dong, M., & Zhong, L. (2013). Characterizing the performance and power consumption of 3D mobile games. Computer, 46, 76–82.CrossRefGoogle Scholar
  30. 30.
    McGuire. (2011). Sponza cathedral [WWW Document]. URL http://graphics.cs.williams.edu/data/meshes.xml.
  31. 31.
    Millan, E., & Rudomin, I. (2006). Impostors and pseudo-instancing for GPU crowd rendering, In The 4th international conference on computer graphics and interactive techniques in Australasia and Southeast Asia (pp. 49–55).Google Scholar
  32. 32.
    Monsoon, (2015). Monsoon power monitor [WWW Document]. URL https://www.msoon.com/LabEquipment/PowerMonitor/.
  33. 33.
    Ogre3D, (2015). Torus Knot.Google Scholar
  34. 34.
    Pan, Y., Cheng, I., & Basu, A. (2005). Quality metric for approximating subjective evaluation of 3-D objects. IEEE Transactions on Multimedia, 7, 269–279. doi: 10.1109/TMM.2005.843364.CrossRefGoogle Scholar
  35. 35.
    Peng, J., Kim, C. S., & Kuo, C. C. J. (2005). Technologies for 3D mesh compression: A survey. Journal of Visual Communication and Image Representation, 16, 688–733.CrossRefGoogle Scholar
  36. 36.
    Policarpo, F., & Oliveira, M.M. (2006). Relief mapping of non-height-field surface details. In symposium on interactive 3D graph games—SI3D’06 1, 55.Google Scholar
  37. 37.
    Puech, C., & Yahia, H. (1985). Quadtrees, octrees, hyperoctrees: A unified analytical approach to tree data structures used in graphics, geometric modeling and image processing In: The first annual symposium on computational geometry (pp. 272–280).Google Scholar
  38. 38.
    Rao, R., Vrudhula, S., & Rakhmatov, D. N. (2003). Battery modeling for energy-aware system design. Computer, 36, 77–87. doi: 10.1109/MC.2003.1250886.CrossRefGoogle Scholar
  39. 39.
    Rogowitz, B.E., Rushmeier, H.E., 2001. Are image quality metrics adequate to evaluate the quality of geometric objects? In B.E. Rogowitz & T.N. Pappas (Eds.), Photonics west 2001-electronic imaging (pp. 340–348). International Society for Optics and Photonics. doi: 10.1117/12.429504.
  40. 40.
    Rushmeier, H.E., Rogowitz, B.E., & Piatko, C. (2000). Perceptual issues in substituting texture for geometry, In B.E. Rogowitz & T.N Pappas (Eds.), SPIE Human Vision and Electronic Imaging (pp. 372–383).Google Scholar
  41. 41.
    Shafi, M., Hashimoto, A., Umehira, M., Ogose, S., & Murase, T. (1997). Wireless communications in the twenty-first century: A perspective. Proceedings of the IEEE, 85, 1622–1638. doi: 10.1109/5.640770.CrossRefGoogle Scholar
  42. 42.
    Silva, S., Santos, B.S., Madeira, J., & Ferreira, C. (2008). Perceived quality assessment of polygonal meshes using observer studies: A new extended protocol, In SPIE Human Vision and Electronic Imaging XIII.Google Scholar
  43. 43.
    Sloan, P.-P. J., Weinstein, D. M., & Brederson, D. J. (1998). Importance driven texture coordinate optimization. Computer Graphics Forum, 17, 97.CrossRefGoogle Scholar
  44. 44.
    Stanford, 2015. Standard Bunny [WWW Document]. URL http://graphics.stanford.edu/data/3Dscanrep/.
  45. 45.
    Turk, G. (2001). Texture synthesis on surfaces. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques—SIGGRAPH’01 pp. 347–354.Google Scholar
  46. 46.
    Vatjus-anttila, J., Ventä-Olkkonen, L., & Häkkilä, J. (2013). On the edge of a virtual world—investigating users preferences and different visualization techniques, In International joint conference on ambient intelligence. New York: Springer.Google Scholar
  47. 47.
    Vatjus-Anttila, J.M., Koskela, T., & Hickey, S. (2013). Effect of 3D content simplification on mobile device energy consumption, In Proceedings of International Conference on Making Sense of Converging Media, AcademicMindTrek’13 (p. 263). New York: ACM.Google Scholar
  48. 48.
    Watson, B., Friedman, A., & McGaffey, A. (2001). Measuring and predicting visual fidelity. In Proceeding 28th annual conference on Computer graphics and interactive techniques (pp. 213–220).Google Scholar
  49. 49.
    Wei, J., & Lou, Y. (2010). Feature preserving mesh simplification using feature sensitive metric. Journal of Computer Science and Technology, 25, 595–605.MathSciNetCrossRefGoogle Scholar
  50. 50.
    Willmott, A. (2011). Rapid simplification of multi-attribute meshes In High-performance graphics (pp. 151–158). Lyon.Google Scholar
  51. 51.
    Xiao, Y., Bhaumik, R., Yang, Z., Siekkinen, M., Savolainen, P., & Ylä-Jääski, A. (2010). A system-level model for runtime power estimation on mobile devices, In IEEE/ACM international conference on cyber, physical and social computing (pp. 27–34).Google Scholar
  52. 52.
    Zhang, M., Zhang, L., & Wang, H. (2011). Geometry and texture coupled generalization of urban buildings. Digital media and digital content management 2011 workshop. Los Alamitos, CA: IEEE. doi: 10.1109/DMDCM.2011.69.Google Scholar

Copyright information

© 3D Research Center, Kwangwoon University and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jarkko Vatjus-Anttila
    • 1
  • Timo Koskela
    • 2
  • Tuomas Lappalainen
    • 3
  • Jonna Häkkilä
    • 3
  1. 1.Cyberlightning LtdOuluFinland
  2. 2.Center for Ubiquitous Computing, Faculty of Information Technology and Electrical EngineeringThe University of OuluOuluFinland
  3. 3.Faculty of Art and DesignUniversity of LaplandRovaniemiFinland

Personalised recommendations