Advertisement

3D Research

, 6:42 | Cite as

Describing 3D Geometric Primitives Using the Gaussian Sphere and the Gaussian Accumulator

  • Zahra Toony
  • Denis Laurendeau
  • Christian Gagné
3DR Express
  • 154 Downloads

Abstract

Most complex object models are composed of basic parts or primitives. Being able to decompose a complex 3D model into such basic primitives is an important step in reverse engineering. Even when an algorithm can segment a complex model into its primitives, a description technique is still needed in order to identify the type of each primitive. Most feature extraction methods fail to describe these basic primitives or need a trained classifier on a database of prepared data to perform this identification. In this paper, we propose a method that can describe basic primitives such as planes, cones, cylinders, spheres, and tori as well as partial models of the latter four primitives. To achieve this task, we combine the concept of Gaussian sphere to a new concept introduced in this paper: the Gaussian accumulator. Comparison of the results of our method with other feature extractors reveals that our approach can distinguish all of these primitives from each other including partial models. Our method was also tested on real scanned data with noise and missing areas. The results show that our method is able to distinguish all of these models as well.

Keywords

Shape description Principal primitives Gaussian sphere Gaussian accumulator 

Notes

Acknowledgments

This work was supported by the NSERC-Creaform Industrial Research Chair on 3D Sensing. Z. Toony was supported by a FRQNT post-graduate scholarship.

References

  1. 1.
    Baareh, A. K., Sheta, A. F., & Al-Batah, M. S. (2012). Feature based 3D object recognition using artificial neural networks. International Journal of Computer Applications, 44, 1–7.Google Scholar
  2. 2.
    Bay, H., Tuytelaars, T., & Van Gool, L.: Surf: Speeded up robust features. In 9th European conference on computer vision (ECCV) (pp. 404–417). Springer, Berlin (2006)Google Scholar
  3. 3.
    Bentley, J. L. (1975). Multidimensional binary search trees used for associative searching. Communications of the ACM, 18(9), 509–517.CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Besl, P. J., & McKay, N. D. (1992). Method for registration of 3-D shapes. Robotics-DL tentative (pp. 586–606).Google Scholar
  5. 5.
    Bronstein, A. M., Bronstein, M. M., Guibas, L. J., & Ovsjanikov, M. (2011). Shape google: Geometric words and expressions for invariant shape retrieval. ACM Transactions on Graphics (TOG), 30(1), 1.CrossRefGoogle Scholar
  6. 6.
    Castellani, U., Cristani, M., Fantoni, S., & Murino, V. (2008). Sparse points matching by combining 3d mesh saliency with statistical descriptors. Computer Graphics Forum, 27(2), 643–652.CrossRefGoogle Scholar
  7. 7.
    Darom, T., & Keller, Y. (2012). Scale-invariant features for 3-d mesh models. IEEE Transactions on Image Processing, 21(5), 2758–2769.CrossRefMathSciNetGoogle Scholar
  8. 8.
    Dubrovina, A., & Kimmel, R. (2010). Matching shapes by eigendecomposition of the Laplace-Beltrami operator. In Proceedings of 3D data processing, visualization and transmission (3DPVT) (vol. 2, no. 3).Google Scholar
  9. 9.
    Fehr, F., Streicher, A., & Burkhardt, H. (2009). A bag of features approach for 3D shape retrieval. Advances in visual computing (pp. 34–43). Berlin: Springer.CrossRefGoogle Scholar
  10. 10.
    Flitton, G. T., Breckon, T. P., & Bouallagu, N. M. (2010). Object recognition using 3D SIFT in complex CT volumes. In Proceedings of the British Machine Vision Conference (BMVC) (pp. 1–12).Google Scholar
  11. 11.
    Furuya, T., & Ohbuchi, R. (2009). Dense sampling and fast encoding for 3D model retrieval using bag-of-visual features. In Proceedings of the ACM international confernce on image and video retrieval (p. 26).Google Scholar
  12. 12.
    Gebal, K., Bærentzen, J. A., Aanæs, H., & Larsen, R. (2009). Shape analysis using the auto diffusion function. Computer Graphics Forum, 28(5), 1405–1413.CrossRefGoogle Scholar
  13. 13.
    Guo, Y., Bennamoun, M., Sohel, F., Lu, M., & Wan, J. (2014). 3d object recognition in cluttered scenes with local surface features: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(11), 2270–2287.CrossRefGoogle Scholar
  14. 14.
    Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J., & Kwok, N. M. (2015). A comprehensive performance evaluation of 3d local feature descriptors. International Journal of Computer Vision 1–24.Google Scholar
  15. 15.
    Guo, Y., Sohel, F., Bennamoun, M., Lu, M., & Wan, J. (2013). Rotational projection statistics for 3d local surface description and object recognition. International Journal of Computer Vision, 105(1), 63–86.CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Harris, C., & Stephens, M. (1988). A combined corner and edge detector. Alvey Vision Conference, 15, 50.Google Scholar
  17. 17.
    Hetzel, G., Leibe, B., Levi, P., & Schiele, B. (2001). 3d object recognition from range images using local feature histograms. In Procedings of IEEE computer society conference on computer vision and pattern recognition (CVPR) (vol. 2, pp. II–394).Google Scholar
  18. 18.
    Hoppe, H. (1996). Progressive meshes. In Proceedings of the 23rd annual conference on computer graphics and interactive techniques (pp. 99–108).Google Scholar
  19. 19.
    Johnson, A. E. (1997). Spin-images: A representation for 3-D surface matching. Ph.D. Thesis, Citeseer.Google Scholar
  20. 20.
    Johnson, A. E., & Hebert, M. (1999). Using spin images for efficient object recognition in cluttered 3d scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(5), 433–449.CrossRefGoogle Scholar
  21. 21.
    Kazhdan, M., Funkhouser, T., & Rusinkiewicz, S. (2003). Rotation invariant spherical harmonic representation of 3D shape descriptors. In Proceedings of Eurographics/ACM SIGGRAPH symposium on geometry processing (pp. 156–164).Google Scholar
  22. 22.
    Kin-Chung Au, O., Tai, C. L., Cohen-Or, D., Zheng, Y., & Fu, H. (2010). Electors voting for fast automatic shape correspondence. Computer Graphics Forum, 29(2), 645–654.CrossRefGoogle Scholar
  23. 23.
    Knopp, J., Prasad, M., & Van Gool, L. (2010). Orientation invariant 3D object classification using hough transform based methods. In Proceedings of the ACM workshop on 3D object retrieval (pp. 15–20).Google Scholar
  24. 24.
    Knopp, J., Prasad, M., Willems, G., Timofte, R., & Van Gool, L. (2010). Hough transform and 3D SURF for robust three dimensional classification. In 11th European conference on computer vision (ECCV) (pp. 589–602). Springer, Berlin.Google Scholar
  25. 25.
    Litman, R., Bronstein, A. M., & Bronstein, M. M. (2011). Diffusion-geometric maximally stable component detection in deformable shapes. Computers & Graphics, 35(3), 549–560.CrossRefGoogle Scholar
  26. 26.
    Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.CrossRefGoogle Scholar
  27. 27.
    Maes, C., Fabry, T., Keustermans, J., Smeets, D., Suetens, P., & Vandermeulen, D. (2010). Feature detection on 3D face surfaces for pose normalisation and recognition. In 4th IEEE international conference on biometrics: theory applications and systems (BTAS) (pp. 1–6).Google Scholar
  28. 28.
    Mansfield, M., & O’Sullivan, C. (2012). Understanding physics. London: Wiley.Google Scholar
  29. 29.
    Mian, A., Bennamoun, M., & Owens, R. (2010). On the repeatability and quality of keypoints for local feature-based 3d object retrieval from cluttered scenes. International Journal of Computer Vision, 89(2–3), 348–361.CrossRefGoogle Scholar
  30. 30.
    Mohamad, M. (2013). 3D object recognition using local shape descriptors. Technical Report No. 2013-614.Google Scholar
  31. 31.
    Murase, H., & Nayar, S. K. (1995). Visual learning and recognition of 3-D objects from appearance. International Journal of Computer Vision, 14(1), 5–24.CrossRefGoogle Scholar
  32. 32.
    Ohbuchi, R., Osada, K., Furuya, T., & Banno, T. (2008). Salient local visual features for shape-based 3D model retrieval. In IEEE International Conference on Shape Modeling and Applications (pp. 93–102).Google Scholar
  33. 33.
    Osada, R., Funkhouser, T., Chazelle, B., & Dobkin, D. (2002). Shape distributions. ACM Transactions on Graphics (TOG), 21(4), 807–832.CrossRefGoogle Scholar
  34. 34.
    Paquet, E., Rioux, M., Murching, A., Naveen, T., & Tabatabai, A. (2000). Description of shape information for 2-D and 3-D objects. Signal Processing: Image Communication, 16(1), 103–122.Google Scholar
  35. 35.
    Peyré, G. (2004) Toolbox Graph. http://www.mathworks.com/matlabcentral/fileexchange/5355-toolbox-graph/. Accessed June-2004.
  36. 36.
    Rabbani, T., & Van Den Heuvel, F. (2005). Efficient Hough transform for automatic detection of cylinders in point clouds. In Proceedings of ISPRS workshop on laser scanning (vol. 3, pp. 60–65).Google Scholar
  37. 37.
    Ruggeri, M. R., Patanè, G., Spagnuolo, M., & Saupe, D. (2010). Spectral-driven isometry-invariant matching of 3d shapes. International Journal of Computer Vision, 89(2–3), 248–265.CrossRefGoogle Scholar
  38. 38.
    Scovanner, P., Ali, S., & Shah, M. (2007). A 3-dimensional sift descriptor and its application to action recognition. In Proceedings of the 15th International Conference on Multimedia (pp. 357–360).Google Scholar
  39. 39.
    Selinger, A., & Nelson, R. C. (1999). A perceptual grouping hierarchy for appearance-based 3d object recognition. Computer Vision and Image Understanding, 76(1), 83–92.CrossRefGoogle Scholar
  40. 40.
    Semechko, A. (2012). Particle sample sphere code for uniform tessellation of a unit sphere:. http://www.mathworks.com/matlabcentral/fileexchange/37004-uniform-sampling-of-a-sphere. Accessed June-2012.
  41. 41.
    Shang, L., & Greenspan, M. (2010). Real-time object recognition in sparse range images using error surface embedding. International Journal of Computer Vision, 89(2–3), 211–228.CrossRefGoogle Scholar
  42. 42.
    Sipiran, I., & Bustos, B. (2010). A robust 3d interest points detector based on harris operator. In Eurographics workshop on 3D object retrieval (vol. 1, pp. 7–14).Google Scholar
  43. 43.
    Sivic, J., & Zisserman, A. (2006). Video google: Efficient visual search of videos. Toward category-level object recognition (pp. 127–144). Berlin: Springer.CrossRefGoogle Scholar
  44. 44.
    Sun, J., Ovsjanikov, M., & Guibas, L. (2009). A concise and provably informative multi-scale signature based on heat diffusion. Computer Graphics Forum, 28(5), 1383–1392.CrossRefGoogle Scholar
  45. 45.
    Teichman, A., Levinson, J., & Thrun, S. (2011). Towards 3D object recognition via classification of arbitrary object tracks. In IEEE international conference on robotics and automation (ICRA) (pp. 4034–4041).Google Scholar
  46. 46.
    Tombari, F., Salti, S., & Di Stefano, L. (2013). Performance evaluation of 3d keypoint detectors. International Journal of Computer Vision, 102(1–3), 198–220.CrossRefGoogle Scholar
  47. 47.
    Toony, Z., Laurendeau, D., & Gagné, C. (2015). PGP2X: Principal geometric primitives parameters extraction. In Proceedings of the 10th international conference on computer graphics theory and applications (GRAPP).Google Scholar
  48. 48.
    Toony, Z., Laurendeau, D., Giguére, P., & Gagné, C. (2014). 3D-NCuts: Adapting normalized cuts to 3D triangulated surface segmentation. In Proceedings of the 9th international conference on computer graphics theory and applications (GRAPP).Google Scholar
  49. 49.
    Wahl, E., Hillenbrand, U., & Hirzinger, G. (2003). Surflet-pair-relation histograms: A statistical 3D-shape representation for rapid classification. In Proceedings of fourth international conference on 3-D digital imaging and modeling (3DIM) (pp. 474–481).Google Scholar
  50. 50.
    Zaharescu, A., Boyer, E., Varanasi, K., & Horaud, R. (2009). Surface feature detection and description with applications to mesh matching. In IEEE conference on computer vision and pattern recognition (CVPR) (pp. 373–380).Google Scholar
  51. 51.
    Zhang, C., & Chen, T. (2001). Efficient feature extraction for 2D/3D objects in mesh representation. In Proceedings of International Conference on Image Processing (vol. 3, pp. 935–938).Google Scholar
  52. 52.
    Zhang, J., Cao, J., Liu, X., Wang, J., Liu, J., & Shi, X. (2013). Point cloud normal estimation via low-rank subspace clustering. Computers & Graphics, 37(6), 697–706.CrossRefGoogle Scholar
  53. 53.
    Zhu, K., Wong, Y. S., Loh, H. T., & Lu, W. F. (2012). 3D CAD model retrieval with perturbed laplacian spectra. Computers in Industry, 63(1), 1–11.CrossRefGoogle Scholar

Copyright information

© 3D Research Center, Kwangwoon University and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Zahra Toony
    • 1
  • Denis Laurendeau
    • 1
  • Christian Gagné
    • 1
  1. 1.Computer Vision and System Laboratory, Department of Electrical and Computer EngineeringUniversité LavalQuébecCanada

Personalised recommendations