3D Research

, 6:28 | Cite as

Configuration, Dimension and Density Control of 3-D Gold Nanostructures on Various Type-B GaAs Surfaces by the Systematic Variation of Annealing Temperature, Annealing Duration and Deposition Amount

  • Daewoo Lee
  • Mao Sui
  • Ming-Yu Li
  • Puran Pandey
  • Quanzhen Zhang
  • Eun-Soo Kim
  • Jihoon Lee
3DR Express


Metallic nanoparticles have received extensive research attention due to their potential to be utilized in catalytic, electronic and optical applications. Tunable feature of quantum effect related to the configuration, dimension as well as the density of nanoparticles makes them appropriate building blocks for their applications at the nano-scale. In this paper, we systematically investigate the fabrication of self-assembled Au nanoparticles on high-index type-B GaAs (n11), where n is 9, 8, 4, and 2. By means of varying annealing temperature, Au deposition amount and annealing duration, the evolution of Au nanoparticles in terms of the average height, lateral diameter and average density is systematically studied. We observe that the variation of annealing temperature leads to an abrupt configuration evolution from the wiggly Au nanostructures to the round-dome shaped nanoparticles due to the limited and/or enhanced surface diffusion at various temperatures. Meanwhile, the variation of deposition amount leads to a wide range of dimensions of Au nanoparticles as a result of the size increase and the corresponding density decrease. Furthermore, based on the annealing duration control, the size of Au nanoparticles tends to be gradually increased owing to the Ostwald-ripening. Meanwhile, the effect of surface index on the size and density is also witnessed. The results are systematically analyzed by using the atomic force microscope images, energy-dispersive X-ray spectroscopy spectra and maps, Fourier filter transforms power spectra, cross-sectional line-profiles and size and density plots.


Metallic nanoparticles Gold nanoparticles Gold nanostructures GaAs type-B substrates 



This work was supported by the National Research Foundation (NRF) of Korea (No. 2011-0030821 and 2013R1A1A1007118) and in part by the research grant of Kwangwoon University in 2015. This work reported in this paper was conducted during the sabbatical year of Kwangwoon University in 2015.

Supplementary material

13319_2015_61_MOESM1_ESM.docx (1 mb)
Supplementary material 1 (DOCX 1060 kb)


  1. 1.
    Daniel, M. C., & Astruc, D. (2004). Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 104(1), 293–346.CrossRefGoogle Scholar
  2. 2.
    Ruffino, F., Torrisi, V., Marletta, G., & Grimaldi, M. G. (2011). Growth morphology of nanoscale sputter-deposited Au films on amorphous soft polymeric substrates. Applied Physics A, 103(4), 939–949.CrossRefGoogle Scholar
  3. 3.
    Jiang, X., Zhang, L., Wang, T., & Wan, Q. (2009). High surface-enhanced Raman scattering activity from Au-decorated individual and branched tin oxide nanowires. Journal of Applied Physics, 106(10), 4316.Google Scholar
  4. 4.
    Mohapatra, S., Mishra, Y. K., Avasthi, D. K., Kabiraj, D., Ghatak, J., & Varma, S. (2008). Synthesis of gold-silicon core-shell nanoparticles with tunable localized surface plasmon resonance. Applied Physics Letters, 92(10), 103105.CrossRefGoogle Scholar
  5. 5.
    Wustholz, K. L., et al. (2010). Structure—activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. Journal of the American Chemical Society, 132(31), 10903–10910.CrossRefGoogle Scholar
  6. 6.
    Ruffino, F., Pugliara, A., Carria, E., Romano, L., Bongiorno, C., Spinella, C., & Grimaldi, M. G. (2012). Novel approach to the fabrication of Au/silica core–shell nanostructures based on nanosecond laser irradiation of thin Au films on Si. Nanotechnology, 23(4), 045601.CrossRefGoogle Scholar
  7. 7.
    Protasenko, V., Bacinello, D., & Kuno, M. (2006). Experimental determination of the absorption cross-section and molar extinction coefficient of CdSe and CdTe nanowires. The Journal of Physical Chemistry B, 110(50), 25322–25331.CrossRefGoogle Scholar
  8. 8.
    Deng, J., Wang, M., Song, X., & Liu, J. (2014). Controlled synthesis of aligned ZnO nanowires and the application in CdSe-sensitized solar cells. Journal of Alloys and Compounds, 588, 399–405.CrossRefGoogle Scholar
  9. 9.
    Dheeraj, D. L., Munshi, A. M., Scheffler, M., van Helvoort, A. T. J., Weman, H., & Fimland, B. O. (2013). Controlling crystal phases in GaAs nanowires grown by Au-assisted molecular beam epitaxy. Nanotechnology, 24(1), 015601.CrossRefGoogle Scholar
  10. 10.
    Hanrath, T., & Korgel, B. A. (2003). Supercritical fluid–liquid–solid (SFLS) synthesis of Si and Ge nanowires seeded by colloidal metal nanocrystals. Advanced Materials, 15(5), 437–440.CrossRefGoogle Scholar
  11. 11.
    Sköld, N., Karlsson, L. S., Larsson, M. W., Pistol, M. E., Seifert, W., Trägårdh, J., & Samuelson, L. (2005). Growth and optical properties of strained GaAs-Ga x In1-x P core-shell nanowires. Nano Letters, 5(10), 1943–1947.CrossRefGoogle Scholar
  12. 12.
    Picraux, S. T., Dayeh, S. A., Manandhar, P., Perea, D. E., & Choi, S. G. (2010). Silicon and germanium nanowires: Growth, properties, and integration. Jom, 62(4), 35–43.CrossRefGoogle Scholar
  13. 13.
    Tchernycheva, M., Travers, L., Patriarche, G., Glas, F., Harmand, J. C., Cirlin, G. E., & Dubrovskii, V. G. (2007). Au-assisted molecular beam epitaxy of InAs nanowires: Growth and theoretical analysis. Journal of Applied Physics, 102(9), 094313.CrossRefGoogle Scholar
  14. 14.
    Duan, X., & Lieber, C. M. (2000). Laser-assisted catalytic growth of single crystal GaN nanowires. Journal of the American Chemical Society, 122(1), 188–189.CrossRefGoogle Scholar
  15. 15.
    Calarco, R., Meijers, R. J., Debnath, R. K., Stoica, T., Sutter, E., & Lüth, H. (2007). Nucleation and growth of GaN nanowires on Si (111) performed by molecular beam epitaxy. Nano Letters, 7(8), 2248–2251.CrossRefGoogle Scholar
  16. 16.
    Martelli, F., et al. (2006). Manganese-induced growth of GaAs nanowires. Nano Letters, 6(9), 2130–2134.CrossRefGoogle Scholar
  17. 17.
    Fan, H. J., Werner, P., & Zacharias, M. (2006). Semiconductor nanowires: From self-organization to patterned growth. Small, 2(6), 700–717.CrossRefGoogle Scholar
  18. 18.
    Wang, H., Zepeda-Ruiz, L. A., Gilmer, G. H., & Upmanyu, M. (2013). Atomistics of vapour–liquid–solid nanowire growth. Nature Communications. doi: 10.1038/ncomms2956
  19. 19.
    Biswas, S., O’Regan, C., Petkov, N., Morris, M. A., & Holmes, J. D. (2013). Manipulating the growth kinetics of vapor–liquid–solid propagated ge nanowires. Nano Letters, 13(9), 4044–4052.CrossRefGoogle Scholar
  20. 20.
    Xu, H. Y., et al. (2012). Quantitative study of GaAs nanowires catalyzed by Au film of different thicknesses. Nanoscale Research Letters, 7(1), 1–6.zbMATHCrossRefGoogle Scholar
  21. 21.
    Fortuna, S. A., & Li, X. (2010). Metal-catalyzed semiconductor nanowires: A review on the control of growth directions. Semiconductor Science and Technology, 25(2), 024005.CrossRefGoogle Scholar
  22. 22.
    Shtrikman, H., et al. (2009). Method for suppression of stacking faults in wurtzite III−V nanowires. Nano Letters, 9(4), 1506–1510.CrossRefGoogle Scholar
  23. 23.
    Liang, B. L., Wang, Z. M., Mazur, Y. I., Strelchuck, V. V., Holmes, K., Lee, J. H., & Salamo, G. J. (2006). InGaAs quantum dots grown on B-type high index GaAs substrates: surface morphologies and optical properties. Nanotechnology, 17(11), 2736.CrossRefGoogle Scholar
  24. 24.
    Schmidbauer, M., et al. (2006). Controlling planar and vertical ordering in three-dimensional (In, Ga) As quantum dot lattices by GaAs surface orientation. Physical Review Letters, 96(6), 066108.CrossRefGoogle Scholar
  25. 25.
    Li, Z., et al. (2010). InGaAs quantum well grown on high-index surfaces for superluminescent diode applications. Nanoscale Research Letters, 5(6), 1079–1084.CrossRefGoogle Scholar
  26. 26.
    Kimoto, T., & Matsunami, H. (1995). Surface diffusion lengths of adatoms on 6H-SiC 0001 faces in chemical vapor deposition of SiC. Journal of Applied Physics, 78(5), 3132–3137.CrossRefGoogle Scholar
  27. 27.
    Vick, D., Friedrich, L. J., Dew, S. K., Brett, M. J., Robbie, K., Seto, M., & Smy, T. (1999). Self-shadowing and surface diffusion effects in obliquely deposited thin films. Thin Solid Films, 339(1), 88–94.CrossRefGoogle Scholar
  28. 28.
    Sui, M., Li, M. Y., Kim, E. S., & Lee, J. (2013). Annealing temperature effect on self-assembled Au droplets on Si (111). Nanoscale Research Letters, 8(1), 1–8.CrossRefGoogle Scholar
  29. 29.
    Ruffino, F., Canino, A., Grimaldi, M. G., Giannazzo, F., Bongiorno, C., Roccaforte, F., & Raineri, V. (2007). Self-organization of gold nanoclusters on hexagonal SiC and SiO2 surfaces. Journal of Applied Physics, 101(6), 064306.CrossRefGoogle Scholar
  30. 30.
    Zhang, L., Cosandey, F., Persaud, R., & Madey, T. E. (1999). Initial growth and morphology of thin Au films on TiO2 (110). Surface Science, 439(1), 73–85.CrossRefGoogle Scholar
  31. 31.
    Lee, J. H., Wang, Z. M., Kim, N. Y., & Salamo, G. J. (2009). Size and density control of in droplets at near room temperatures. Nanotechnology, 20(28), 285602.CrossRefGoogle Scholar
  32. 32.
    Lee, J. H., Wang, Z. M., & Salamo, G. J. (2007). Observation of change in critical thickness of In droplet formation on GaAs (100). Journal of Physics: Condensed Matter, 19(17), 176223.Google Scholar
  33. 33.
    Abraham, D. B., & Newman, C. M. (2009). Equilibrium Stranski–Krastanow and Volmer–Weber models. EPL (Europhysics Letters), 86(1), 16002.CrossRefGoogle Scholar
  34. 34.
    Schwartzkopf, M., et al. (2013). From atoms to layers: in situ gold cluster growth kinetics during sputter deposition. Nanoscale, 5(11), 5053–5062.CrossRefGoogle Scholar
  35. 35.
    Li, X. L., Wang, C. X., & Yang, G. W. (2014). Thermodynamic theory of growth of nanostructures. Progress in Materials Science, 64, 121–199.CrossRefGoogle Scholar
  36. 36.
    Li, X. L., Ouyang, G., & Yang, G. W. (2008). A thermodynamic theory of the self-assembly of quantum dots. New Journal of Physics, 10(4), 043007.MathSciNetCrossRefGoogle Scholar
  37. 37.
    Li, M. Y., Sui, M., Kim, E. S., & Lee, J. (2014). Droplets to merged nanostructures: evolution of gold nanostructures by the variation of deposition amount on Si (111). Crystal Growth & Design, 14(3), 1128–1134.CrossRefGoogle Scholar
  38. 38.
    Ruffino, F., & Grimaldi, M. G. (2010). Atomic force microscopy study of the growth mechanisms of nanostructured sputtered Au film on Si (111): Evolution with film thickness and annealing time. Journal of Applied Physics, 107(10), 104321.CrossRefGoogle Scholar
  39. 39.
    Sui, M., Li, M. Y., Kim, E. S., & Lee, J. (2014). Fabrication of self-assembled Au droplets by the systematic variation of the deposition amount on various type-B GaAs surfaces. Nanoscale Research Letters, 9(1), 1–11.CrossRefGoogle Scholar
  40. 40.
    Beszeda, I., Gontier-Moya, E. G., & Imre, A. W. (2005). Surface Ostwald-ripening and evaporation of gold beaded films on sapphire. Applied Physics A, 81(4), 673–677.CrossRefGoogle Scholar
  41. 41.
    Zinke-Allmang, M., Feldman, L. C., & Grabow, M. H. (1992). Clustering on surfaces. Surface Science Reports, 16(8), 377–463.CrossRefGoogle Scholar
  42. 42.
    AbuWaar, Z. Y., Wang, Z. M., Lee, J. H., & Salamo, G. J. (2006). Observation of Ga droplet formation on (311) A and (511) A GaAs surfaces. Nanotechnology, 17(16), 4037.CrossRefGoogle Scholar
  43. 43.
    Platen, J., Setzer, C., Ranke, W., & Jacobi, K. (1998). Structure and surface core level shifts of the GaAs (114) A and B surfaces. Applied Surface Science, 123, 43–47.CrossRefGoogle Scholar
  44. 44.
    Xu, H., Zhou, W., Xu, B., Jiang, W., Gong, Q., Ding, D., & Wang, Z. (1999). In composition dependence of lateral ordering in InGaAs quantum dots grown on (311) B GaAs substrates. Applied Surface Science, 141(1), 101–106.CrossRefGoogle Scholar
  45. 45.
    Chadi, D. J. (1985). Atomic and electronic structures of (111), (211), and (311) surfaces of GaAs. Journal of Vacuum Science & Technology B, 3(4), 1167–1169.CrossRefGoogle Scholar
  46. 46.
    Platen, J., Kley, A., Setzer, C., Jacobi, K., Ruggerone, P., & Scheffler, M. (1999). The importance of high-index surfaces for the morphology of GaAs quantum dots. Journal of Applied Physics, 85(7), 3597–3601.CrossRefGoogle Scholar

Copyright information

© 3D Research Center, Kwangwoon University and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Daewoo Lee
    • 1
  • Mao Sui
    • 1
  • Ming-Yu Li
    • 1
  • Puran Pandey
    • 1
  • Quanzhen Zhang
    • 1
  • Eun-Soo Kim
    • 1
  • Jihoon Lee
    • 1
    • 2
  1. 1.College of Electronics and InformationKwangwoon UniversitySeoulSouth Korea
  2. 2.Institute of Nanoscale Science and EngineeringUniversity of ArkansasFayettevilleUSA

Personalised recommendations