A Physiologically Based Pharmacokinetic Model for Optimally Profiling Lamotrigine Disposition and Drug–Drug Interactions

  • Todd M. Conner
  • Ronald C. Reed
  • Tao Zhang
Original Research Article


Background and Objectives

Lamotrigine (Lamictal®) is a broad-spectrum antiepileptic drug available in both immediate-(IR) and extended-release (XR) formulations. Here, we present a new physiologically based pharmacokinetic (PBPK) model for IR and XR formulations of lamotrigine to predict disposition in adults and children, plus drug–drug interactions (DDIs).


Models for lamotrigine IR and XR formulations were constructed using a Simcyp® Simulator. Concentration–time profiles were simulated for lamotrigine IR single (SD) and steady-state (SS) doses ranging from 25 to 200 mg in adults, as well as 2 mg/kg (SD), and 7.7–9.4 mg/kg (SS) in children aged between 4 and 17 years. Lamotrigine XR profiles were simulated for SD and SS doses ranging from 250 to 400 mg. DDI prediction with lamotrigine was simulated in adults with enzyme-inducing drugs, rifampin (rifampicin) and ritonavir, as well as the enzyme inhibitor, valproic acid.


The lamotrigine model predicted adult area-under-the-curve (AUC) and peak plasma concentration (Cmax) results for IR SD within 35% of observed data; lamotrigine IR SS dosing was within 10% and 30% of observed data, respectively. Pediatric lamotrigine IR SD AUC and Cmax values were within 10% and 15% of observed data, respectively. AUC and Cmax values for lamotrigine XR SD simulated in adults were within 20% of observed data; similarly lamotrigine XR SS parameters were within 10%. Concerning DDI simulation in adults, predicted-to-observed lamotrigine AUC ratios [AUCDDI/AUCalone] were within 15% for ritonavir and rifampin, and 20% for valproic acid.


Our developed PBPK lamotrigine profile accurately predicts DDIs and lamotrigine IR/XR formulation disposition in adults and children. This PBPK model will be helpful in designing future DDI studies for co-administration of lamotrigine with other drugs and in designing individualized patient dosing regimens.



Simcyp Limited., a Certara Company, is gratefully acknowledged for an academic license for the Simcyp® population-based simulator and for providing user support.

Compliance with ethical standards

Conflict of Interest

All authors declare no conflict of interest relevant to the content of this article.


This work was sponsored by the Husson University Research Grant.

Supplementary material

13318_2018_532_MOESM1_ESM.pdf (80 kb)
Supplementary material 1 (PDF 79 kb)
13318_2018_532_MOESM2_ESM.docx (58 kb)
Supplementary material 2 (DOCX 58 kb)


  1. 1.
    Patsalos PN. Drug interactions with the newer antiepileptic drugs (AEDs)–part 1: pharmacokinetic and pharmacodynamic interactions between AEDs. Clin Pharmacokinet. 2013;52(11):927–66.PubMedCrossRefGoogle Scholar
  2. 2.
    Patsalos PN, Froscher W, Pisani F, van Rijn CM. The importance of drug interactions in epilepsy therapy. Epilepsia. 2002;32(3):365–85.CrossRefGoogle Scholar
  3. 3.
    Schmidt D, Schachter SC. Drug treatment of epilepsy in adults. BMJ. 2014;348:g254.PubMedCrossRefGoogle Scholar
  4. 4.
    Karceski S, Morrell MJ, Carpenter D. Treatment of epilepsy in adults: expert opinion, 2005. Epilepsy Behav. 2005;7(Suppl 1):S1–64.PubMedCrossRefGoogle Scholar
  5. 5.
    Deckers CL, Czuczwar SJ, Hekster YA, Keyser A, Kubova H, Meinardi H, et al. Selection of antiepileptic drug polytherapy based on mechanisms of action: the evidence reviewed. Epilepsia. 2000;41(11):1364–74.PubMedCrossRefGoogle Scholar
  6. 6.
    Drugs@FDA [online database]. FDA Approved Drug Products: LAMICTAL. U.S. Food & Drug Administration, Silver Spring, MD. Accessed June 14 2018.
  7. 7.
    Dickins M, Chen C. Lamotrigine: Chemistry, biotransformation, and pharmacokinetics. In: Levy RH, Mattson RH, Meldrum BS, Perucca E, editors. Antiepileptic Drugs. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2002. p. 370–9.Google Scholar
  8. 8.
    Garnett WR. Lamotrigine: pharmacokinetics. J Child Neurol. 1997;12(Suppl 1):S10–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Tompson DJ, Ali I, Oliver-Willwong R, Job S, Zhu L, Lemme F, et al. Steady-state pharmacokinetics of lamotrigine when converting from a twice-daily immediate-release to a once-daily extended-release formulation in subjects with epilepsy (The COMPASS Study). Epilepsia. 2008;49(3):410–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Cohen AF, Land GS, Breimer DD, Yuen AW, Winton C, Peck AW. Lamotrigine, a new anticonvulsant: pharmacokinetics in normal humans. Clin Pharmacol Ther. 1987;42(5):535–41.PubMedCrossRefGoogle Scholar
  11. 11.
    Yau MK, Garnett WE, Wargin WA, Pellock JM. A single dose, dose proportionality and bioequivalence study of lamotrigine in normal volunteers. Epilepsia. 1991;32(Suppl 3):8.Google Scholar
  12. 12.
    Anderson GD, Yau MK, Gidal BE, Harris SJ, Levy RH, Lai AA, et al. Bidirectional interaction of valproate and lamotrigine in healthy subjects. Clin Pharmacol Ther. 1996;60(2):145–56.PubMedCrossRefGoogle Scholar
  13. 13.
    Ramsay RE, Pellock JM, Garnett WR, Sanchez RM, Valakas AM, Wargin WA, et al. Pharmacokinetics and safety of lamotrigine (Lamictal) in patients with epilepsy. Epilepsy Res. 1991;10(2–3):191–200.PubMedCrossRefGoogle Scholar
  14. 14.
    Parsons DN, Dickins M, Morley TJ. Lamotrigine: Absorption, distribution, and excretion. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic Drugs. 4th ed. New York: Raven Press; 1995. p. 877–81.Google Scholar
  15. 15.
    Magdalou J, Herber R, Bidault R, Siest G. In vitro N-glucuronidation of a novel antiepileptic drug, lamotrigine, by human liver microsomes. J Pharmacol Exp Ther. 1992;260(3):1166–73.PubMedGoogle Scholar
  16. 16.
    Marcellin P, de Bony F, Garret C, Altman C, Boige V, Castelnau C, et al. Influence of cirrhosis on lamotrigine pharmacokinetics. Br J Clin Pharmacol. 2001;51(5):210–414.Google Scholar
  17. 17.
    Pennell PB, Peng L, Newport DJ, Ritchie JC, Koganti A, Holley DK, et al. Lamotrigine in pregnancy: clearance, therapeutic drug monitoring, and seizure frequency. Neurology. 2008;70(22 Pt 2):2130–6.PubMedCrossRefGoogle Scholar
  18. 18.
    May TW, Rambeck B, Jürgens U. Serum concentrations of lamotrigine in epileptic patients: the influence of dose and comedication. Ther Drug Monit. 1996;18(5):523–31.PubMedCrossRefGoogle Scholar
  19. 19.
    Grasela TH, Fiedler-Kelly J, Cox E, Womble GP, Risner ME, Chen C. Population pharmacokinetics of lamotrigine adjunctive therapy in adults with epilepsy. J Clin Pharmacol. 1999;39(4):373–84.PubMedCrossRefGoogle Scholar
  20. 20.
    Zaccara G, Perucca E. Interactions between antiepileptic drugs, and between antiepileptic drugs and other drugs. Epileptic Disord. 2014;16(4):409–31.PubMedGoogle Scholar
  21. 21.
    Reimers A, Helde G, Bråthen G, Brodtkorb E. Lamotrigine and its N2-glucuronide during pregnancy: the significance of renal clearance and estradiol. Epilepsy Res. 2011;94(3):198–205.PubMedCrossRefGoogle Scholar
  22. 22.
    Chen H, Yang K, Choi S, Fischer JH, Jeong H. Up-regulation of UDP-glucuronosyltransferase (UGT) 1A4 by 17beta-estradiol: a potential mechanism of increased lamotrigine elimination in pregnancy. Drug Metab Dispos. 2009;37(9):1841–7.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Sinz MW, Remmel RP. Isolation and characterization of a novel quaternary ammonium-linked glucuronide of lamotrigine. Drug Metab Dispos. 1991;19(1):149–53.PubMedGoogle Scholar
  24. 24.
    Doig MV, Clare RA. Use of thermospray liquid chromatography-mass spectrometry to aid in the identification of urinary metabolites of a novel antiepileptic drug, Lamotrigine. J Chromatogr. 1991;554(1–2):181–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Lamictal [package insert]. GlaxoSmithKline, LLC, Research Triangle Park, NC 27709. 2015.,020764s046,022251s017lbl.pdf. Accessed 19 Nov 2018.
  26. 26.
    Johannessen SI, Nattino D, Berry DJ, Bialer M, Krämer G, Tomson T, et al. Therapeutic drug monitoring of the newer antiepileptic drugs. Ther Drug Monit. 2003;25(3):347–63.CrossRefGoogle Scholar
  27. 27.
    Green MD, Tephly TR. Glucuronidation of amines and hydroxylated xenobiotics and endobiotics catalyzed by expressed human UGT1.4 protein. Drug Metab Dispos. 1996;24(3):356–63.PubMedGoogle Scholar
  28. 28.
    Green MD, King CD, Mojarrabi B, Mackenzie PI, Tephly TR. Glucuronidation of amines and other xenobiotics catalyzed by expressed human UDP-glucuronosyltransferase 1A3. Drug Metab Dispos. 1998;26(6):507–12.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Argikar UA, Remmel RP. Variation in glucuronidation of lamotrigine in human liver microsomes. Xenobiotica. 2009;39(5):355–63.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Mojarrabi B, Butler R, Mackenzie PI. cDNA cloning and characterization of the human UDP glucuronosyltransferase, UGT1A3. Biochem Biophys Res Commun. 1996;225(3):785–90.PubMedCrossRefGoogle Scholar
  31. 31.
    Jones HM, Gardner IB, Watson KJ. Modelling and PBPK simulation in drug discovery. AAPS J. 2009;11(1):155–66.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Sager JE, Yu J-T, Ragueneau-Majlessi I, Isoherranen N. Physiologically based pharmacokinetic (PBPK) modeling and simulation approaches: a systematic review of published models, applications, and model verification. Drug Metab Dispos. 2015;43(11):1823–37.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Ebert U, Thong N, Oertel R, Kirch W. Effects of rifampicin and cimetidine on pharmacokinetics and pharmacodynamics of lamotrigine in healthy subjects. Eur J Clin Pharmacol. 2000;56(4):299–304.PubMedCrossRefGoogle Scholar
  34. 34.
    Hermann R, Knebel NG, Niebch G, Richards L, Borlak J, Locher M. Pharmacokinetic interaction between retigabine and lamotrigine in healthy subjects. Eur J Clin Pharmacol. 2003;58(12):795–802.PubMedCrossRefGoogle Scholar
  35. 35.
    Keränen T, Sorri A, Moilanen E, Ylitalo P. Effects of charcoal on the absorption and elimination of the antiepileptic drugs lamotrigine and oxcarbazepine. Arzneimittelforschung. 2010;60(7):421–6.PubMedGoogle Scholar
  36. 36.
    Srichaiya A, Longchoopol C, Oo-Puthinan S, Sayasathid J, Sripalakit P, Viyoch J. Bioequivalence of generic lamotrigine 100-mg tablets in healthy Thai male volunteers: a randomized, single-dose, two-period, two-sequence crossover study. Clin Ther. 2008;30(10):1844–51.PubMedCrossRefGoogle Scholar
  37. 37.
    Perez-Lloret S, Olmos L, de Mena F, Pieczanski P, Rodriguez Moncalvo JJ. Bioequivalence of lamotrigine 50-mg tablets in healthy male volunteers: a randomized, single-dose, 2-period, 2-sequence crossover study. Arzneimittelforschung. 2012;62(10):470–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Yuen AW, Peck AW. Lamotrigine pharmacokinetics: oral and i.v. infusion in man. Br J Clin Pharmacol. 1988;26:242P.Google Scholar
  39. 39.
    Peck AW. Clinical pharmacology of lamotrigine. Epilepsia. 1991;32(Suppl 2):S9–12.PubMedCrossRefGoogle Scholar
  40. 40.
    Yuen AW. Lamotrigine. In: Pisani E, Avanzini G, Richens A, editors. New epileptic drugs. Amsterdam: Elsevier Science Publishers; 1991.Google Scholar
  41. 41.
    Vaithianathan S, Raman S, Jiang W, Ting TY, Kane MA, Polli JE. Biopharmaceutic risk assessment of brand and generic lamotrigine tablets. Mol Pharm. 2015;12(7):2436–43.PubMedCrossRefGoogle Scholar
  42. 42.
    Jamei M, Turner D, Yang J, Neuhoff S, Polak S, Rostami-Hodjegan A, et al. Population-based mechanistic prediction of oral drug absorption. AAPS J. 2009;11(2):225–37.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Buxton IR, Currie R, Dela-Cruz MA, Goodson GW, Karolak W, Maleki M et al., inventors; Glaxosmithkline, assignee. Novel formulations and method of treatment. United States patent US 2004/0192690 A1. 2004 Sep 30, 2004.Google Scholar
  44. 44.
    LAM105379 [Internet]. A pivotal single-dose randomised, parallel-group, open-label study to demonstrate bioequivalence of 300 mg lamotrigine XR relative to 100 mg + 200 mg lamotrigine XR and to demonstrate lack of food effect on 300 mg lamotrigine XR in healthy male and female volunteers. GlaxoSmithKline Clinical Study Register, Research Triangle Park, NC 27709. 2007. Accessed 19 Nov 2018.
  45. 45.
    Wang J, Flanagan DR. General solution for diffusion-controlled dissolution of spherical particles. 1. Theory. J Pharm Sci. 1999;88(7):731–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Wang J, Flanagan DR. General solution for diffusion-controlled dissolution of spherical particles. 2. Evaluation of experimental data. J Pharm Sci. 2002;91(2):534–42.PubMedCrossRefGoogle Scholar
  47. 47.
    Sun D, Lennernas H, Welage LS, Barnett JL, Landowski CP, Foster D, et al. Comparison of human duodenum and Caco-2 gene expression profiles for 12,000 gene sequences tags and correlation with permeability of 26 drugs. Pharm Res. 2002;19(10):1400–16.PubMedCrossRefGoogle Scholar
  48. 48.
    Tchaparian E, Tang L, Xu G, Huang T, Jin L. Cell based experimental models as toold for prediction of human intestinal absorption. 15th North American ISSX Meeting; San Diego, CA 2008.Google Scholar
  49. 49.
    Sugano K. Computational oral absorption simulation for low-solubility compounds. Chem Biodivers. 2009;6(11):2014–29.PubMedCrossRefGoogle Scholar
  50. 50.
    Nokhodchi A, Raja S, Patel P, Asare-Addo K. The role of oral controlled release matrix tablets in drug delivery systems. Bioimpacts. 2012;2(4):175–87.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Jayanthi B, Manna PK, Madhusudhan S, Mohanta GP, Manavalan R. Per oral extended release products–an overview. J Appl Pharm Sci. 2011;1(2):50–5.Google Scholar
  52. 52.
    Shargel L, Wu-Pong S, Yu ABC. Modified-Release Drug Products. In: Brown M, Naglieri C, editors. Applied biopharmaceutics and pharmacokinetics. 5th ed. New York: Appleton and Lange Reviews/McGraw-Hill; 2005. p. 515–52.Google Scholar
  53. 53.
    Stamatopoulos K. In silico tools to simulate the regional differences of the human GI tract. European Network on Understanding Gastrointestinal Absorption-related Processes (UNGAP) Leuven, Belgium 2018. Accessed 19 Nov 2018.
  54. 54.
    Huang W, Lee SL, Yu LX. Mechanistic approaches to predicting oral drug absorption. AAPS J. 2009;11(2):217–24.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Jawad S, Yuen WC, Peck AW, Hamilton MJ, Oxley JR, Richens A. Lamotrigine: single-dose pharmacokinetics and initial 1 week experience in refractory epilepsy. Epilepsy Res. 1987;1(3):194–201.PubMedCrossRefGoogle Scholar
  56. 56.
    Polepally AR, Brundage RC, Remmel RP, Leppik IE, Pennell PB, White JR, et al. Lamotrigine pharmacokinetics following oral and stable-labeled intravenous administration in young and elderly adult epilepsy patients: effect of age. Epilepsia. 2018;59(9):1718–26.PubMedCrossRefGoogle Scholar
  57. 57.
    Yuen AW, Land G, Weatherley BC, Peck AW. Sodium valproate acutely inhibits lamotrigine metabolism. Br J Clin Pharmacol. 1992;33(5):511–3.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Wootton R, Soul-Lawton J, Rolan PE, Sheung CT, Cooper JD, Posner J. Comparison of the pharmacokinetics of lamotrigine in patients with chronic renal failure and healthy volunteers. Br J Clin Pharmacol. 1997;43(1):23–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Fillastre JP, Taburet AM, Fialaire A, Etienne I, Bidault R, Singlas E. Pharmacokinetics of lamotrigine in patients with renal impairment: influence of haemodialysis. Drugs Exp Clin Res. 1993;19(1):25–32.PubMedGoogle Scholar
  60. 60.
    Chen C, Casale EJ, Duncan B, Culverhouse EH, Gilman J. Pharmacokinetics of lamotrigine in children in the absence of other antiepileptic drugs. Pharmacotherapy. 1999;19(4):437–41.PubMedCrossRefGoogle Scholar
  61. 61.
    Proctor NJ, Tucker GT, Rostami-Hodjegan A. Predicting drug clearance from recombinantly expressed CYPs: intersystem extrapolation factors. Xenobiotica. 2004;34(2):151–78.PubMedCrossRefGoogle Scholar
  62. 62.
    Birnbaum AK, Kriel RL, Im Y, Remmel RP. Relative bioavailability of lamotrigine chewable dispersible tablets administered rectally. Pharmacotherapy. 2001;21(2):158–62.PubMedCrossRefGoogle Scholar
  63. 63.
    van Luin M, Colbers A, Verwey-van Wissen CP, van Ewijk-Beneken-Kolmer EW, van der Kolk M, Hoitsma A, et al. The effect of raltegravir on the glucuronidation of lamotrigine. J Clin Pharmacol. 2009;49(10):1220–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Incecayir T, Agabeyoglu I, Gucuyener K. Comparison of plasma and saliva concentrations of lamotrigine in healthy volunteers. Arzneimittelforschung. 2007;57(8):517–21.PubMedGoogle Scholar
  65. 65.
    Jann MW, Hon YY, Shamsi SA, Zheng J, Awad EA, Spratlin V. Lack of pharmacokinetic interaction between lamotrigine and olanzapine in healthy volunteers. Pharmacotherapy. 2006;26(5):627–33.PubMedCrossRefGoogle Scholar
  66. 66.
    Sidhu J, Job S, Bullman J, Francis E, Abbott R, Ascher J, et al. Pharmacokinetics and tolerability of lamotrigine and olanzapine coadministered to healthy subjects. Br J Clin Pharmacol. 2006;61(4):420–6.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Almeida L, Nunes T, Sicard E, Rocha JF, Falcão A, Brunet JS, et al. Pharmacokinetic interaction study between eslicarbazepine acetate and lamotrigine in healthy subjects. Acta Neurol Scand. 2010;121(4):257–64.PubMedCrossRefGoogle Scholar
  68. 68.
    Chien S, Yao C, Mertens A, Verhaeghe T, Solanki B, Doose DR, et al. An interaction study between the new antiepileptic and CNS drug carisbamate (RWJ-333369) and lamotrigine and valproic acid. Epilepsia. 2007;48(7):1328–38.PubMedCrossRefGoogle Scholar
  69. 69.
    Doose DR, Brodie MJ, Wilson EA, Chadwick D, Oxbury J, Berry DJ, et al. Topiramate and lamotrigine pharmacokinetics during repetitive monotherapy and combination therapy in epilepsy patients. Epilepsia. 2003;44(7):917–22.PubMedCrossRefGoogle Scholar
  70. 70.
    Colucci R, Glue P, Holt B, Banfield C, Reidenberg P, Meehan JW, et al. Effect of felbamate on the pharmacokinetics of lamotrigine. J Clin Pharmacol. 1996;36(7):634–8.PubMedCrossRefGoogle Scholar
  71. 71.
    van der Lee MJ, Dawood L, ter Hofstede HJ, de Graaff-Teulen MJ, van Ewijk-Beneken Kolmer EW, Caliskan-Yassen N, et al. Lopinavir/ritonavir reduces lamotrigine plasma concentrations in healthy subjects. Clin Pharmacol Ther. 2006;80(2):159–68.PubMedCrossRefGoogle Scholar
  72. 72.
    Glauser T, Ben-Menachem E, Bourgeois B, Cnaan A, Guerreiro C, Kälviäinen R, et al. Updated ILAE evidence review of antiepileptic drug efficacy and effectiveness as initial monotherapy for epileptic seizures and syndromes. Epilepsia. 2013;53(3):551–63.CrossRefGoogle Scholar
  73. 73.
    Stephen LJ, Brodie MJ. Lamotrigine: Clinical efficacy and use in Epilepsy. In: Levy RH, Mattson RH, Meldrum BS, Perucca E, editors. Antiepileptic drugs. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2002. p. 389–402.Google Scholar
  74. 74.
    Patsalos PN. Drug interactions with the newer antiepileptic drugs (AEDs)—Part 2: pharmacokinetic and pharmacodynamic interactions between AEDs and drugs used to treat non-epilepsy disorders. Clin Pharmacokinet. 2013;52(12):1045–61.PubMedCrossRefGoogle Scholar
  75. 75.
    Smith CM, Faucette SR, Wang H, LeCluyse EL. Modulation of UDP-glucuronosyltransferase 1A1 in primary human hepatocytes by prototypical inducers. J Biochem Mol Toxicol. 2005;19(2):96–108.PubMedCrossRefGoogle Scholar
  76. 76.
    Zhou SF, Xue CC, Yu XQ, Li C, Wang G. Clinically important drug interactions potentially involving mechanism-based inhibition of cytochrome P450 3A4 and the role of therapeutic drug monitoring. Ther Drug Monit. 2007;29:687–710.PubMedCrossRefGoogle Scholar
  77. 77.
    Doostdar H, Grant MH, Melvin WT, Wolf CR, Burke MD. The effects of inducing agents on cytochrome P450 and UDP-glucuronyltransferase activities in human HEPG2 hepatoma cells. Biochem Pharmacol. 1993;46(4):629–35.PubMedCrossRefGoogle Scholar
  78. 78.
    Gallicano KD, Sahai J, Shukla VK, Seguin I, Pakuts A, Kwok D, et al. Induction of zidovudine glucuronidation and amination pathways by rifampicin in HIV-infected patients. Br J Clin Pharmacol. 1999;48(2):168–79.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Wang Z, Wong T, Hashizume T, Dickmann LZ, Scian M, Koszewski NJ, et al. Human UGT1A4 and UGT1A3 conjugate 25-hydroxyvitamin D3: metabolite structure, kinetics, inducibility, and interindividual variability. Endocrinology. 2014;155(6):2052–63.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Ritonavir. In: AHFS Drug Information. Bethesda, MD: American Society of Health-System Pharmacists, Inc; Updated Feb 27, 2018.Google Scholar
  81. 81.
    Foisy MM, Yakiwchuk EM, Hughes CA. Induction effects of ritonavir: implications for drug interactions. Ann Pharmacother. 2008;42(7):1048–59.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Burger DM, Huisman A, Van Ewijk N, Neisingh H, Van Uden P, Rongen GA, et al. The effect of atazanavir and atazanavir/ritonavir on UDP-glucuronosyltransferase using lamotrigine as a phenotypic probe. Clin Pharmacol Ther. 2008;84(6):698–703.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Rowland A, Elliot DJ, Williams JA, Mackenzie PI, Dickinson RG, Miners JO. In vitro characterization of lamotrigine N2-glucuronidation and the lamotrigine-valproic acid interaction. Drug Metab Dispos. 2006;34(6):1055–62.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Wattanachai N, Tassaneeyakul W, Rowland A, Elliot DJ, Bowalgaha K, Knights KM, et al. Effect of albumin on human liver microsomal and recombinant CYP1A2 activities: impact on in vitro-in vivo extrapolation of drug clearance. Drug Metab Dispos. 2012;40(5):982–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Conner TM, Nikolian VC, Georgoff PE, Pai MP, Alam HB, Sun D, et al. Physiologically based pharmacokinetic modeling of disposition and drug-drug interactions for valproic acid and divalproex. Eur J Pharm Sci. 2018;111:465–81.PubMedCrossRefGoogle Scholar
  86. 86.
    Perucca E, Kwan P. Overtreatment in epilepsy: how it occurs and how it can be avoided. CNS Drugs. 2005;19(11):897–908.PubMedCrossRefGoogle Scholar
  87. 87.
    Perucca E. Clinically relevant drug interactions with antiepileptic drugs. Br J Clin Pharmacol. 2006;61(3):246–55.PubMedCrossRefGoogle Scholar
  88. 88.
    Johannessen Landmark C, Patsalos PN. Methodologies used to identify and characterize interactions among antiepileptic drugs. Expert Rev Clin Pharmacol. 2012;5(3):281–92.PubMedCrossRefGoogle Scholar
  89. 89.
    Kendall T, Morriss R, Mayo-Wilson E, Marcus E. Assessment and management of bipolar disorder: summary of updated NICE guidance. BMJ. 2014;349:g5673.PubMedCrossRefGoogle Scholar
  90. 90.
    Shorvon SD. Drug treatment of epilepsy in the century of the ILAE: the second 50 years, 1959–2009. Epilepsia. 2009;50(Suppl 3):93–130.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Johannessen Landmark C, Patsalos PN. Drug interactions involving the new second- and third-generation antiepileptic drugs. Expert Rev Neurother. 2010;10(1):119–40.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Tsamandouras N, Rostami-Hodjegan A, Aarons L. Combining the ‘bottom up’ and ‘top down’ approaches in pharmacokinetic modelling: fitting PBPK models to observed clinical data. Br J Clin Pharmacol. 2015;79(1):48–55.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Patsalos PN, Perucca E. Clinically important drug interactions in epilepsy: general features and interactions between antiepileptic drugs. Lancet Neurol. 2003;2(6):347–56.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Lalic M, Cvejic J, Popovic J, Bozic K, Golocorbin-Kon S, Al-Salami H, et al. Lamotrigine and valproate pharmacokinetics interactions in epileptic patients. Eur J Drug Metab Pharmacokinet. 2009;34(2):93–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Gidal BE, Sheth R, Parnell J, Maloney K, Sale M. Evaluation of VPA dose and concentration effects on lamotrigine pharmacokinetics: implications for conversion to lamotrigine monotherapy. Epilepsy Res. 2003;57(2–3):85–93.PubMedCrossRefGoogle Scholar
  96. 96.
    Mackenzie PI, Hu DG, Gardner-Stephen DA. The regulation of UDP-glucuronosyltransferase genes by tissue-specific and ligand-activated transcription factors. Drug Metab Rev. 2010;42(1):99–109.PubMedCrossRefGoogle Scholar
  97. 97.
    Gufford BT, Robarge JD, Eadon MT, Gao H, Lin H, Liu Y, et al. Rifampin modulation of xeno- and endobiotic conjugating enzyme mRNA expression and associated microRNAs in human hepatocytes. Pharmacol Res Perspect. 2018;6(2):e00386.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Miners JO, Knights KM, Houston JB, Mackenzie PI. In vitro-in vivo correlation for drugs and other compounds eliminated by glucuronidation in humans: pitfalls and promises. Biochem Pharmacol. 2006;71(11):1531–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Remmel RP, Zhou J, Argikar UA. UDP-Glucuronosyltransferases. In: Pearson PG, Wienkers LC, editors. Handbook of drug metabolism. 2nd ed. New York: Informa Healthcare USA, Inc; 2009. pp. 137–77.Google Scholar
  100. 100.
    Chen S, Beaton D, Nguyen N, Senekeo-Effenberger K, Brace-Sinnokrak E, Argikar U, et al. Tissue-specific, inducible, and hormonal control of the human UDP-glucuronosyltransferase-1 (UGT1) locus. J Biol Chem. 2005;280(45):37547–57.PubMedCrossRefGoogle Scholar
  101. 101.
    Senekeo-Effenberger K, Chen S, Brace-Sinnokrak E, Bonzo JA, Yueh MF, Argikar U, et al. Expression of the human UGT1 locus in transgenic mice by 4-chloro-6-(2,3-xylidino)-2-pyrimidinylthioacetic acid (WY-14643) and implications on drug metabolism through peroxisome proliferator-activated receptor alpha activation. Drug Metab Dispos. 2007;35(3):419–27.PubMedCrossRefGoogle Scholar
  102. 102.
    Luo G, Cunningham M, Kim S, Burn T, Lin J, Sinz M, et al. CYP3A4 induction by drugs: correlation between a pregnane X receptor reporter gene assay and CYP3A4 expression in human hepatocytes. Drug Metab Dispos. 2002;30(7):795–804.PubMedCrossRefGoogle Scholar
  103. 103.
    Patsalos PN, Perucca E. Clinically important drug interactions in epilepsy: interactions between antiepileptic drugs and other drugs. Lancet Neurol. 2003;2(8):473–81.PubMedCrossRefGoogle Scholar
  104. 104.
    Guideline on the investigation of drug interactions. London, UK: Committee for Human Medicinal Products, European Medicines Agency 2012 Last updated: Mar 6, 2015. Accessed 19 Nov 2018.
  105. 105.
    Shebley M, Sandhu P, Emami Riedmaier A, Jamei M, Narayanan R, Patel A et al. Physiologically based pharmacokinetic model qualification and reporting procedures for regulatory submissions: a consortium perspective. Clin Pharmacol Ther. 2018. Scholar
  106. 106.
    Wagner C, Pan Y, Hsu V, Sinha V, Zhao P. Predicting the effect of CYP3A inducers on the pharmacokinetics of substrate drugs using physiologically based pharmacokinetic (PBPK) modeling: an analysis of PBPK submissions to the US FDA. Clin Pharmacokinet. 2016;55(4):475–83.PubMedCrossRefGoogle Scholar
  107. 107.
    Chen C, Wright J, Gidal B, Messenheimer J. Assessing impact of real-world dosing irregularities with lamotrigine extended-release and immediate-release formulations by pharmacokinetic simulation. Ther Drug Monit. 2013;35(2):188–93.PubMedCrossRefGoogle Scholar
  108. 108.
    Dulac O. General principles: use of antiepileptic drugs in children. In: Levy RH, Mattson RH, Meldrum BS, Perucca E, editors. Antiepileptic drugs. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2002. p. 119–31.Google Scholar
  109. 109.
    Gilman JT, Duchowny M, Campo AE. Pharmacokinetic considerations in the treatment of childgood epilepsy. Pediatr Drugs. 2003;5(4):267–77.CrossRefGoogle Scholar
  110. 110.
    Yu G, Zheng QS, Li GF. Similarities and differences in gastrointestinal physiology between neonates and adults: a physiologically based pharmacokinetic modeling perspective. AAPS J. 2014;16(6):1162–6.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Dickinson GL, Rostami-Hodjegan A. Building virtual human populations: assessing the propagation of genetic variability in drug metabolism to pharmacokinetics and pharmacodynamics. In: Bertau M, Mosekilde E, Westerhoff HV, editors. Biosimulation in drug development. Weinheim: Wiley-VCH; 2008.Google Scholar
  112. 112.
    Polepally AR, Remmel RP, Brundage RC, Leppik IE, Rarick JO, Ramsay RE, et al. Steady-state pharmacokinetics and bioavailability of immediate-release and extended-release formulations of lamotrigine in elderly epilepsy patients: use of stable isotope methodology. J Clin Pharmacol. 2015;55(10):1101–8.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Gidal BE. Drug absorption in the elderly: biopharmaceutical considerations for the antiepileptic drugs. Epilepsy Res. 2006;68(Suppl 1):S65–9.PubMedCrossRefGoogle Scholar
  114. 114.
    Mangoni AA, Jackson SH. Age-related changes in pharmacokinetics and pharmacodynamics: basic principles and practical applications. Br J Clin Pharmacol. 2004;57(1):4–14.Google Scholar
  115. 115.
    Wynne HA, Cope LH, Mutch E, Rawlins MD, Woodhouse KW, James OF. The effect of age upon liver volume and apparent liver blood flow in healthy man. Hepatology. 1989;9(2):297–301.PubMedCrossRefGoogle Scholar
  116. 116.
    Hussein Z, Posner J. Population pharmacokinetics of lamotrigine monotherapy in patients with epilepsy: retrospective analysis of routine monitoring data. Br J Clin Pharmacol. 1997;43(5):457–65.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Brzaković B, Vučićević K, Kovačević SV, Miljković B, Prostran M, Martinović Ž, et al. Pharmacokinetics of lamotrigine in paediatric and young adult epileptic patients–nonlinear mixed effects modelling approach. Eur J Clin Pharmacol. 2014;70(2):179–85.PubMedCrossRefGoogle Scholar
  118. 118.
    Rivas N, Buelga DS, Elger CE, Santos-Borbujo J, Otero MJ, Domínguez-Gil A, et al. Population pharmacokinetics of lamotrigine with data from therapeutic drug monitoring in German and Spanish patients with epilepsy. Ther Drug Monit. 2008;30(4):483–9.PubMedGoogle Scholar
  119. 119.
    Milosheska D, Lorber B, Vovk T, Kastelic M, Dolžan V, Grabnar I. Pharmacokinetics of lamotrigine and its metabolite N-2-glucuronide: influence of polymorphism of UDP-glucuronosyltransferases and drug transporters. Br J Clin Pharmacol. 2016;82(2):399–411.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    LEP111102 [Internet]. A Pivotal, Single-Dose, Randomised, Parallel-Group, Open-Label Study to Demonstrate Bioequivalence of 250 mg Lamotrigine XR relative to 200 mg + 50 mg Lamotrigine XR and to Demonstrate Lack of Food Effect on 250 mg Lamotrigine XR in Healthy Male and Female Volunteers. GlaxoSmithKline Clinical Study Register, Research Triangle Park, NC 27709. 2008. Accessed June 14 2018.
  121. 121.
    LAM105377 [Internet]. A randomised, open-label, parallel-group design study to evaluate the pharmacokinetic characteristics, safety and tolerability of single oral doses of three prototype 300 mg enteric coated—modified release formulations of Lamotrigine in healthy subjects. GlaxoSmithKline Clinical Study Registry, Research Triangle Park, NC 27709. 2006. Accessed 19 Nov 2018.
  122. 122.
    Otoul C, De Smedt H, Stockis A. Lack of pharmacokinetic interaction of levetiracetam on carbamazepine, valproic acid, topiramate, and lamotrigine in children with epilepsy. Epilepsia. 2007;48(11):2111–5.PubMedCrossRefGoogle Scholar
  123. 123.
    Rambeck B, Wolf P. Lamotrigine clinical pharmacokinetics. Clin Pharmacokinet. 1993;25(6):433–43.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Sanoh S, Horiguchi A, Sugihara K, Kotake Y, Tayama Y, Ohshita H, et al. Prediction of in vivo hepatic clearance and half-life of drug candidates in human using chimeric mice with humanized liver. Drug Metab Dispos. 2012;40(2):322–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of PharmacyHusson UniversityBangorUSA
  2. 2.School of PharmacyWest Virginia UniversityMorgantownUSA

Personalised recommendations