Intestinal Absorption of Isoalantolactone and Alantolactone, Two Sesquiterpene Lactones from Radix Inulae, Using Caco-2 Cells

  • Renjie Xu
  • Ying Peng
  • Mengyue Wang
  • Xiaobo LiEmail author
Short Communication



Isoalantolactone and alantolactone are the main sesquiterpene lactones in Radix Inulae (dried root of Inula helenium L. or I. racemosa Hook. F.), which is a frequently utilized herbal medicine. They also occur in several plants and have various pharmacologic effects. However, they have been found to have poor oral bioavailability in rats.


To understand the intestinal absorptive characteristics of isoalantolactone and alantolactone as well specific influx and efflux transporters in their absorption.


Bidirectional permeabilities of isoalantolactone and alantolactone were investigated across Caco-2 cell monolayers. Transport assays were performed using different concentrations of two lactones and specific inhibitors of ATP-binding cassette transporters and influx transporters.


The absorption permeability of isoalantolactone and alantolactone was high at the tested concentrations (5, 20 and 80 μmol/l), and the major permeation mechanism of both lactones was found to be passive diffusion with active efflux mediated by multidrug resistance-associated proteins (MRPs) and breast cancer resistance protein (BCRP).


Our results demonstrated that the absorption permeability of isoalantolactone and alantolactone was good in the Caco-2 cell model. The isoalantolactone and alantolactone absorption elucidated in this study provides useful information for further pharmacokinetics studies. Since low intestinal absorption can now be ruled out as a cause, further studies are needed to explain the low oral bioavailability of the two sesquiterpene lactones.


Compliance with Ethical Standards


This work was supported by the National Science & Technology Key Projects funded by the Chinese Government (2012ZX09103201-038).

Conflict of Interest

All the authors have no conficts of interest to declare.


  1. 1.
    Bohlmann F, Mahanta PK, Jakupovic J, Rastogi RC, Natu AA. New sesquiterpene lactones from Inula species. Phytochemistry. 1978;17(7):1165–72.CrossRefGoogle Scholar
  2. 2.
    Stojakowska A, Michalska K, Malarz J. Simultaneous quantification of eudesmanolides and thymol derivatives from tissues of Inula helenium and I. royleana by reversed-phase high-performance liquid chromatography. Phytochem Anal. 2006;17(3):157–61.CrossRefGoogle Scholar
  3. 3.
    Editorial Board of Jiangsu New Hospital. The dictionary of traditional medicine. Shanghai: Shanghai Scientific & Technical Press; 1985. p. 80–82.Google Scholar
  4. 4.
    Huo Y, Shi HM, Li WW, Li XB. HPLC determination and NMR structural elucidation of sesquiterpene lactones in Inula helenium. J Pharm Biomed Anal. 2010;51(4):942–6.CrossRefGoogle Scholar
  5. 5.
    Peng Y, Wang SQ, Wang MY, Wang F, Yang JY, Wu CF, Li XB. Dual effects on constipation and diarrhea: protective potential of Radix Inulae lactones on irritable bowel syndrome. RSC Adv. 2016;6:94486–95.CrossRefGoogle Scholar
  6. 6.
    Schmidt TJ, Brun R, Willuhn G, Khalid SA. Anti-trypanosomal activity of helenalin and some structurally related sesquiterpene lactones. Planta Med. 2002;68(8):750–1.CrossRefGoogle Scholar
  7. 7.
    Qiu J, Luo M, Wang J, Dong J, Li H, Leng B, Zhang Q, Dai X, Zhang Y, Niu X, Deng X. Isoalantolactone protects against Staphylococcus aureus pneumonia. FEMS Microbiol Lett. 2011;324(2):147–55.CrossRefGoogle Scholar
  8. 8.
    Stojanović-Radić Z, Čomić L, Radulović N, Blagojević P, Denić M, Miltojević A, Rajković J, Mihajilov-Krstev T. Antistaphylococcal activity of Inula helenium L. root essential oil: eudesmane sesquiterpene lactones induce cell membrane damage. Eur J Clin Microbiol Infect Dis. 2012;31(6):1015–25.CrossRefGoogle Scholar
  9. 9.
    Chun J, Choi RJ, Khan S, Lee DS, Kim YC, Nam YJ, Lee DU, Kim YS. Alantolactone suppresses inducible nitric oxide synthase and cyclooxygenase-2 expression by down-regulating NF-κB, MAPK and AP-1 via the MyD88 signaling pathway in LPS-activated RAW 264.7 cells. Int Immunopharmacol. 2012;14(4):375–83.CrossRefGoogle Scholar
  10. 10.
    Zhang Y, Bao YL, Wu Y, Yu CL, Huang YX, Sun Y, Zheng LH, Li YX. Alantolactone induces apoptosis in RKO cells through the generation of reactive oxygen species and the mitochondrial pathway. Mol Med Rep. 2013;8(4):967–72.CrossRefGoogle Scholar
  11. 11.
    Chun J, Li R, Cheng M, Kim YS. Alantolactone selectively suppresses STAT3 activation and exhibits potent anticancer activity in MDA-MB-231 cells. Cancer Lett. 2015;357(1):393–403.CrossRefGoogle Scholar
  12. 12.
    Zhao P, Pan Z, Luo Y, Zhang L, Li X, Zhang G, Zhang Y, Cui R, Sun M, Zhang X. Alantolactone induces apoptosis and cell cycle arrest on lung squamous cancer SK-MES-1 cells. J Biochem Mol Toxicol. 2015;29(5):199–206.CrossRefGoogle Scholar
  13. 13.
    Cai H, Meng X, Li Y, Yang C, Liu Y. Growth inhibition effects of isoalantolactone on K562/A02 cells: caspase-dependent apoptotic pathways, S phase arrest, and downregulation of Bcr/Abl. Phytother Res. 2014;28(11):1679–86.CrossRefGoogle Scholar
  14. 14.
    Rasul A, Khan M, Yu B, Ali M, Bo YJ, Yang H, Ma T. Isoalantolactone, a sesquiterpene lactone, induces apoptosis in SGC-7901 cells via mitochondrial and phosphatidylinositol 3-kinase/Akt signaling pathways. Arch Pharm Res. 2013;36(10):1262–9.CrossRefGoogle Scholar
  15. 15.
    Xu RJ, Zhou GS, Peng Y, Wang MY, Li XB. Pharmacokinetics, tissue distribution and excretion of isoalantolactone and alantolactone in rats after oral administration of Radix Inulae extract. Molecules. 2015;20(5):7719–36.CrossRefGoogle Scholar
  16. 16.
    Guo C, Zhang S, Teng S, Niu K. Simultaneous determination of sesquiterpene lactones isoalantolactone and alantolactone isomers in rat plasma by liquid chromatography with tandem mass spectrometry: application to a pharmacokinetic study. J Sep Sci. 2014;37(8):950–6.CrossRefGoogle Scholar
  17. 17.
    Xu RJ, Wang MY, Peng Y, Li XB. Pharmacokinetic comparison of isoalantolactone and alantolactone in rats after administration separately by optimization of an UPLC-MS2 method. J Chem. 2014;2014:354618.Google Scholar
  18. 18.
    Amorim MH, Gil da Costa RM, Lopes C, Bastos MM. Sesquiterpene lactones: adverse health effects and toxicity mechanisms. Crit Rev Toxicol. 2013;43(7):559–79.CrossRefGoogle Scholar
  19. 19.
    Zhu M, Liang X, Zhao L, Liao ZG, Zhao GW, Cao YC, Zhang J, Luo Y. Elucidation of the transport mechanism of baicalin and the influence of a Radix Angelicae dahuricae extract on the absorption of baicalin in a Caco-2 cell monolayer model. J Ethnopharmacol. 2013;150(2):553–9.CrossRefGoogle Scholar
  20. 20.
    Hidalgo IJ, Raub TJ, Borchardt RT. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology. 1989;96(3):736–49.CrossRefGoogle Scholar
  21. 21.
    Duan J, Xie Y, Luo H, Li G, Wu T, Zhang T. Transport characteristics of isorhamnetin across intestinal Caco-2 cell monolayers and the effects of transporters on it. Food Chem Toxicol. 2014;66:313–20.CrossRefGoogle Scholar
  22. 22.
    Kuwayama K, Inoue H, Kanamori T, Tsujikawa K, Miyaguchi H, Iwata Y, Miyauchi S, Kamo N, Kishi T. Uptake of 3,4-methylenedioxymethamphetamine and its related compounds by a proton-coupled transport system in Caco-2 cells. Biochim Biophys Acta. 2008;1778(1):42–50.CrossRefGoogle Scholar
  23. 23.
    Crowe A, Diep S. pH dependent efflux of methamphetamine derivatives and their reversal through human Caco-2 cell monolayers. Eur J Pharmacol. 2008;592:7–12.CrossRefGoogle Scholar
  24. 24.
    Chen Y, Wang Y, Zhou J, Gao X, Qu D, Liu C. Study on the mechanism of intestinal absorption of epimedins A, B and C in the Caco-2 cell model. Molecules. 2014;19(1):686–98.CrossRefGoogle Scholar
  25. 25.
    Guo J, Yang X. Intestinal permeability of atractylenolides across the human Caco-2 cell monolayer model. J Chin Pharm Sci. 2011;20(5):505–9.CrossRefGoogle Scholar
  26. 26.
    Zhang B, Zhu X, Hu J, Ye H, Luo T, Liu XR, Li HY, Li W, Zheng YN, Deng ZY. Absorption mechanism of Ginsenoside compound K and its butyl and octyl ester prodrugs in Caco-2 cells. J Agric Food Chem. 2012;60(41):10278–84.CrossRefGoogle Scholar
  27. 27.
    Uršič D, Berginc K, žakelj S, Kristl A. Influence of luminal monosaccharides on secretion of glutathione conjugates from rat small intestine in vitro. Int J Pharm. 2009;381(2):199–204.CrossRefGoogle Scholar
  28. 28.
    Prime-Chapman HM, Fearn RA, Cooper AE, Moore V, Hirst BH. Differential multidrug resistance-associated protein 1 through 6 isoform expression and function in human intestinal epithelial Caco-2 cells. J Pharmacol Exp Ther. 2004;311(2):476–84.CrossRefGoogle Scholar
  29. 29.
    Zhang L, Lin G, Kovács B, Jani M, Krajcsi P, Zuo Z. Mechanistic study on the intestinal absorption and disposition of baicalein. Eur J Pharm Sci. 2007;31:221–31.CrossRefGoogle Scholar
  30. 30.
    Zhang S, Yang X, Morris ME. Combined effects of multiple flavonoids on breast cancer resistance protein (ABCG2)-mediated transport. Pharm Res. 2004;21(7):1263–73.CrossRefGoogle Scholar
  31. 31.
    Chabane MN, Ahmad AA, Peluso J, Muller CD, Ubeaud GJ. Quercetin and naringenin transport across human intestinal Caco-2 cells. J Pharm Pharmacol. 2009;61(11):1473–83.CrossRefGoogle Scholar
  32. 32.
    Wahlang B, Pawar YB, Bansal AK. Identification of permeability-related hurdles in oral delivery of curcumin using the Caco-2 cell model. Eur J Pharm Biopharm. 2011;77(2):275–82.CrossRefGoogle Scholar
  33. 33.
    Yee S. In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man–fact or myth. Pharm Res. 1997;14(6):763–6.CrossRefGoogle Scholar
  34. 34.
    Harris RZ, Jang GR, Tsunoda S. Dietary effects on drug metabolism and transport. Clin Pharmacokinet. 2003;42(13):1071–88.CrossRefGoogle Scholar
  35. 35.
    Laitinen L, Takala E, Vuorela H, Vuorela P, Kaukonen AM, Marvola M. Anthranoid laxatives influence the absorption of poorly permeable drugs in human intestinal cell culture model (Caco-2). Eur J Pharm Biopharm. 2007;66:135–45.CrossRefGoogle Scholar
  36. 36.
    Müller J, Lips KS, Metzner L, Neubert RH, Koepsell H, Brandsch M. Drug specificity and intestinal membrane localization of human organic cation transporters (OCT). Biochem Pharmacol. 2005;70(12):1851–60.CrossRefGoogle Scholar
  37. 37.
    Jonker JW, Schinkel AH. Pharmacological and physiological functions of the polyspecific organic cation transporters OCT1, 2, and 3 (SLC22A1-3). J Pharmacol Exp Ther. 2004;308:2–9.CrossRefGoogle Scholar
  38. 38.
    Estudante M, Morais JG, Soveral G, Benet LZ. Intestinal drug transporters: an overview. Adv Drug Deliv Rev. 2013;65(10):1340–56.CrossRefGoogle Scholar
  39. 39.
    Liu ZH, Liu KX. The transporters of intestinal tract and techniques applied to evaluate interactions between drugs and transporters. Asian J Pharm Sci. 2013;8(3):151–8.CrossRefGoogle Scholar
  40. 40.
    Bansal T, Jaggi M, Khar RK. Emerging significance of flavonoids as P-glycoprotein inhibitors in cancer chemotherapy. J Pharm Pharm Sci. 2009;12(1):46–78.CrossRefGoogle Scholar
  41. 41.
    Bromberg L, Alakhov V. Effects of polyether-modified poly (acrylic acid) microgels on doxorubicin transport in human intestinal epithelial Caco-2 cell layers. J Control Release. 2003;88(1):11–22.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of PharmacyShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China

Personalised recommendations