Advertisement

Pharmacokinetics and Bioavailability Enhancement of Baicalin: A Review

  • Ting Huang
  • Yanan Liu
  • Chengliang ZhangEmail author
Review Article
  • 61 Downloads

Abstract

Baicalin is one of the major bioactive components of Scutellaria radix, a Chinese herb that has been used since ancient times. Baicalin has various pharmacological activities, including antitumor, antimicrobial, and antioxidant, and has wide clinical applications. Baicalin displays a distinct pharmacokinetic profile including gastrointestinal hydrolysis, enterohepatic recycling, carrier-mediated transport, and complicated metabolism. The in vivo disposition of baicalin is affected by combinations of other herbs and baicalin can interact with other co-administered drugs due to competition between metabolic enzymes and protein binding. Furthermore, baicalin exhibits altered pharmacokinetic properties under different pathological conditions. Due to its low bioavailability, emerging novel baicalin preparations including nano/micro-scale baicalin delivery systems show better absorption and higher bioavailability in preclinical studies, and show promise for future clinical applications. Thus, this current review offers a comprehensive report on the pharmacokinetic behavior of baicalin and strategies to improve its bioavailability.

Notes

Compliance with Ethical Standards

Funding

No sources of funding were used to prepare this review.

Conflict of interest

All of the authors report no conflicts of interest.

References

  1. 1.
    Zhao Q, Chen XY, Martin C. Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants. Sci Bull (Beijing). 2016;61(18):1391–8.Google Scholar
  2. 2.
    Noh K, Kang Y, Nepal M, Jeong K, Oh D, Kang M, Lee S, Kang W, Jeong H, Jeong T. Role of intestinal microbiota in baicalin-induced drug interaction and its pharmacokinetics. Molecules. 2016;21(3):337.Google Scholar
  3. 3.
    Xing J, Chen X, Zhong D. Absorption and enterohepatic circulation of baicalin in rats. Life Sci. 2005;78(2):140–6.Google Scholar
  4. 4.
    Kalapos-Kovács B, Magda B, Jani M, Fekete Z, Szabó PT, Antal I, Krajcsi P, Klebovich I. Multiple ABC transporters efflux baicalin. Phytother Res. 2015;29(12):1987–90.Google Scholar
  5. 5.
    Zhang J, Cai W, Zhou Y, Liu Y, Wu X, Li Y, Lu J, Qiao Y. Profiling and identification of the metabolites of baicalin and study on their tissue distribution in rats by ultra-high-performance liquid chromatography with linear ion trap-Orbitrap mass spectrometer. J Chromatogr B Analyt Technol Biomed Life Sci. 2015;985:91–102.Google Scholar
  6. 6.
    Lai MY, Hsiu SL, Chen CC, Hou YC, Chao PD. Urinary pharmacokinetics of baicalein, wogonin and their glycosides after oral administration of Scutellariae radix in humans. Biol Pharm Bull. 2003;26(1):79–83.Google Scholar
  7. 7.
    Tian X, Cheng ZY, He J, Jia LJ, Qiao HL. Concentration-dependent inhibitory effects of baicalin on the metabolism of dextromethorphan, a dual probe of CYP2D and CYP3A, in rats. Chem Biol Interact. 2013;203(2):522–9.Google Scholar
  8. 8.
    Ma S, Zhao M, Liu H, Wang L, Zhang X. Pharmacokinetic effects of baicalin on cerebral ischemia-reperfusion after iv administration in rats. Chin Herbal Med. 2012;4(1):53–7.Google Scholar
  9. 9.
    Zhang Z, Qin L, Peng L, Zhang Q, Wang Q, Lu Z, Song Y, Gao X. Pharmacokinetic–pharmacodynamic modeling to study the antipyretic effect of Qingkailing injection on Pyrexia model rats. Molecules. 2016;21(3):317.Google Scholar
  10. 10.
    Taiming L, Xuehua J. Investigation of the absorption mechanisms of baicalin and baicalein in rats. J Pharm Sci. 2006;95(6):1326–33.Google Scholar
  11. 11.
    Li M, Shi A, Pang H, Xue W, Li Y, Cao G, Yan B, Dong F, Li K, Xiao W, He G, Du G, Hu X. Safety, tolerability, and pharmacokinetics of a single ascending dose of baicalein chewable tablets in healthy subjects. J Ethnopharmacol. 2014;156:210–5.Google Scholar
  12. 12.
    Fong YK, Li CR, Wo SK, Wang S, Zhou L, Zhang L, Lin G, Zuo Z. In vitro and in situ evaluation of herb–drug interactions during intestinal metabolism and absorption of baicalein. J Ethnopharmacol. 2012;141(2):742–53.Google Scholar
  13. 13.
    Zhang R, Cui Y, Wang Y, Tian X, Zheng L, Cong H, Wu B, Huo X, Wang C, Zhang B. Catechol-O-methyltransferase and UDP-glucuronosyltransferases in the metabolism of baicalein in different species. Eur J Drug Metab Pharmacokinet. 2017;42(6):1–12.Google Scholar
  14. 14.
    Akao T, Kawabata K, Yanagisawa E, Ishihara K, Mizuhara Y, Wakui Y, Sakashita Y, Kobashi K. Baicalin, the predominant flavone glucuronide of Scutellariae radix, is absorbed from the rat gastrointestinal tract as the aglycone and restored to its original form. J Pharm Pharmacol. 2000;52(12):1563–8.Google Scholar
  15. 15.
    Huang P, Gao JW, Shi Z, Zou JL, Lu YS, Yuan YM, Yao MC. A novel UPLC-MS/MS method for simultaneous quantification of rhein, emodin, berberine and baicalin in rat plasma and its application in a pharmacokinetic study. Bioanalysis. 2012;4(10):1205.Google Scholar
  16. 16.
    Zhao Y, Kong H, Sun Y, Feng H, Zhang Y, Su X, Qu H, Wang Q. Assessment of baicalin in mouse blood by monoclonal antibody-based icELISA. Biomed Chromatogr. 2014;28(12):1864–8.Google Scholar
  17. 17.
    Zhang J, Zhang S, Teng S, Zhai L. An LC-MS/MS method for simultaneous determination of four flavonoids from Semen Oroxyli in rat plasma and its application to a pharmacokinetic study. J Chromatogr B Anal Technol Biomed Life Sci. 2016;1020:96–102.Google Scholar
  18. 18.
    Zhang ZQ, Liua W, Zhuang L, Wang J, Zhang S. Comparative pharmacokinetics of baicalin, wogonoside, baicalein and wogonin in plasma after oral administration of pure baicalin, radix Scutellariae and ScutellariaePaeoniae couple extracts in normal and ulcerative colitis rats. Iran J Pharm Res. 2013;12(3):399–409.Google Scholar
  19. 19.
    Lu T, Song J, Huang F, Deng Y, Xie L, Wang G, Liu X. Comparative pharmacokinetics of baicalin after oral administration of pure baicalin, radix Scutellariae extract and Huang-Lian-Jie-Du-Tang to rats. J Ethnopharmacol. 2007;110(3):412–8.Google Scholar
  20. 20.
    Shaw LH, Lin LC, Tsai TH. HPLC-MS/MS analysis of a traditional Chinese medical formulation of Bu-Yang-Huan-Wu-Tang and its pharmacokinetics after oral administration to rats. PLoS One. 2012;7(8):e43848.Google Scholar
  21. 21.
    Tong L, Wan M, Zhang L, Zhu Y, Sun H, Bi K. Simultaneous determination of baicalin, wogonoside, baicalein, wogonin, oroxylin A and chrysin of radix Scutellariae extract in rat plasma by liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal. 2012;70:6–12.Google Scholar
  22. 22.
    Song JZ, Li LJ, Ji L, Shun L, Rui Y. The pharmacokinetics of Tiangou antihypertensive capsule in rat in vivo. Biomed Rep. 2017;6(1):113–9.Google Scholar
  23. 23.
    Tang Y, Zhu H, Zhang Y, Huang C. Determination of human plasma protein binding of baicalin by ultrafiltration and high-performance liquid chromatography. Biomed Chromatogr. 2006;20(10):1116–9.Google Scholar
  24. 24.
    Liu H, Bao W, Ding H, Jang J, Zou G. Binding modes of flavones to human serum albumin: insights from experimental and computational studies. J Phys Chem B. 2010;114(40):12938–47.Google Scholar
  25. 25.
    Zhang L, Lin G, Kovacs B, Jani M, Krajcsi P, Zuo Z. Mechanistic study on the intestinal absorption and disposition of baicalein. Eur J Pharm Sci. 2007;31(3–4):221–31.Google Scholar
  26. 26.
    Akao T, Sato K, Hanada M. Hepatic contribution to a marked increase in the plasma concentration of baicalin after oral administration of its aglycone, baicalein, in multidrug resistance-associated protein 2-deficient rat. Biol Pharm Bull. 2009;32(12):2079–82.Google Scholar
  27. 27.
    Wei Y, Pi C, Yang G, Xiong X, Lan Y, Yang H, Zhou Y, Ye Y, Zou Y, Zheng W, Zhao L. LC-UV determination of baicalin in rabbit plasma and tissues for application in pharmacokinetics and tissue distribution studies of baicalin after intravenous administration of liposomal and injectable formulations. Molecules. 2016;21(4):444.Google Scholar
  28. 28.
    Zhu H, Qian Z, He F, Liu M, Pan L, Zhang Q, Tang Y. Novel pharmacokinetic studies of the Chinese formula Huang-Lian-Jie-Du-Tang in MCAO rats. Phytomedicine. 2013;20(10):767–74.Google Scholar
  29. 29.
    Tarragó T, Kichik N, Claasen B, Prades R, Teixidó M, Giralt E. Baicalin, a prodrug able to reach the CNS, is a prolyl oligopeptidase inhibitor. Bioorg Med Chem. 2008;16(15):7516–24.Google Scholar
  30. 30.
    Tsai PL, Tsai TH. Pharmacokinetics of baicalin in rats and its interactions with cyclosporin A, quinidine and SKF-525A: a microdialysis study. Planta Med. 2004;70(11):1069–74.Google Scholar
  31. 31.
    Fong S, Li C, Ho YC, Li R, Wang Q, Wong YC, Xue H, Zuo Z. Brain uptake of bioactive flavones in Scutellariae radix and its relationship to anxiolytic effect in mice. Mol Pharm. 2017;14(9):2908–16.Google Scholar
  32. 32.
    Zhang L, Xing D, Wang W, Wang R, Du L. Kinetic difference of baicalin in rat blood and cerebral nuclei after intravenous administration of Scutellariae radix extract. J Ethnopharmacol. 2006;103(1):120–5.Google Scholar
  33. 33.
    Huang H, Zhang Y, Yang R, Tang X. Determination of baicalin in rat cerebrospinal fluid and blood using microdialysis coupled with ultra-performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2008;874(1–2):77–83.Google Scholar
  34. 34.
    Akao T, Sato K, He JX, Ma CM, Hattori M. Baicalein 6-O-beta-d-glucopyranuronoside is a main metabolite in the plasma after oral administration of baicalin, a flavone glucuronide of Scutellariae radix, to rats. Biol Pharm Bull. 2013;36(5):748–53.Google Scholar
  35. 35.
    Wang Y, Yang J, Li X, Wang J. The metabolism of baicalin in rat and the biological activities of the metabolites. Evid-Based Complement Altern. 2012;2012:1–06.Google Scholar
  36. 36.
    Lu Q, Zhang L, Moro A, Chen MC, Harris DM, Eibl G, Go VW. Detection of baicalin metabolites baicalein and oroxylin-A in mouse pancreas and pancreatic xenografts. Pancreas. 2012;41(4):571–6.Google Scholar
  37. 37.
    Yu J, Guo X, Zhang Q, Peng Y and Zheng J. Metabolite profile analysis and pharmacokinetic study of emodin, baicalin and geniposide in rats. Xenobiotica. 2017:1–11.Google Scholar
  38. 38.
    Jiang S, Xu J, Qian D, Shang E, Liu P, Su S, Leng X, Guo J, Duan J, Du L, Zhao M. Comparative metabolites in plasma and urine of normal and type 2 diabetic rats after oral administration of the traditional Chinese Scutellaria–coptis herb couple by ultra performance liquid chromatography-tandem mass spectrometry. J Chromatogr B. 2014;965:27–32.Google Scholar
  39. 39.
    Zeng MF, Pan LM, Zhu HX, Zhang QC, Guo LW. Comparative pharmacokinetics of baicalin in plasma after oral administration of Huang-Lian-Jie-Du-Tang or pure baicalin in MCAO and sham-operated rats. Fitoterapia. 2010;81(6):490–6.Google Scholar
  40. 40.
    Wang Z, Hu H, Chen F, Lan K, Wang A. Reduced system exposures of total rhein and baicalin after combinatory oral administration of rhein, baicalin and berberine to beagle dogs and rats. J Ethnopharmacol. 2013;145(2):442–9.Google Scholar
  41. 41.
    Shi R, Zhou H, Liu Z, Ma Y, Wang T, Liu Y, Wang C. Influence of coptis Chinensis on pharmacokinetics of flavonoids after oral administration of radix Scutellariae in rats. Biopharm Drug Dispos. 2009;30(7):398–410.Google Scholar
  42. 42.
    Zhu Z, Zhao L, Liu X, Chen J, Zhang H, Zhang G, Chai Y. Comparative pharmacokinetics of baicalin and wogonoside by liquid chromatography-mass spectrometry after oral administration of Xiaochaihu Tang and radix Scutellariae extract to rats. J Chromatogr B Anal Technol Biomed Life Sci. 2010;878(24):2184–90.Google Scholar
  43. 43.
    Huo X, Wang B, Zheng L, Cong H, Xiang T, Wang S, Sun C, Wang C, Zhang L, Deng S, Wu B, Ma X. Comparative pharmacokinetic study of baicalin and its metabolites after oral administration of baicalin and Chaiqin Qingning capsule in normal and febrile rats. J Chromatogr B. 2017;1059:14–20.Google Scholar
  44. 44.
    Zhu ML, Liang XL, Zhao LJ, Liao ZG, Zhao GW, Cao YC, Zhang J, Luo Y. Elucidation of the transport mechanism of baicalin and the influence of a radix Angelicae Dahuricae extract on the absorption of baicalin in a Caco-2 cell monolayer model. J Ethnopharmacol. 2013;150(2):553–9.Google Scholar
  45. 45.
    Liang XL, Zhang J, Zhao GW, Li Z, Luo Y, Liao ZG, Yan DM. Mechanisms of improvement of intestinal transport of baicalin and puerarin by extracts of Radix Angelicae Dahuricae. Phytother Res. 2015;29(2):220–7.Google Scholar
  46. 46.
    Yang YF, Li Z, Xin WF, Wang YY, Zhang WS. Pharmacokinetics and brain distribution differences of baicalin in rat underlying the effect of Panax notoginsenosides after intravenous administration. Chin J Nat Med. 2014;12(8):632–40.Google Scholar
  47. 47.
    Xing J, Chen X, Sun Y, Luan Y, Zhong D. Interaction of baicalin and baicalein with antibiotics in the gastrointestinal tract. J Pharm Pharmacol. 2005;57(6):743–50.Google Scholar
  48. 48.
    Gao N, Zou D, Qiao HL. Concentration-dependent inhibitory effect of Baicalin on the plasma protein binding and metabolism of chlorzoxazone, a CYP2E1 probe substrate, in rats in vitro and in vivo. PLoS One. 2013;8(1):e53038.Google Scholar
  49. 49.
    Tian X, Cheng ZY, Jin H, Gao J, Qiao HL. Inhibitory effects of baicalin on the expression and activity of CYP3A induce the pharmacokinetic changes of midazolam in rats. Evid Based Complement Altern Med. 2013;2013:179643.Google Scholar
  50. 50.
    Gao N, Fang Y, Qi B, Jia LJ, Jin H, Qiao HL. Pharmacokinetic changes of unbound theophylline are due to plasma protein binding displacement and CYP1A2 activity inhibition by baicalin in rats. J Ethnopharmacol. 2013;150(2):477–84.Google Scholar
  51. 51.
    Gao N, Qi B, Liu FJ, Fang Y, Zhou J, Jia LJ, Qiao HL. Inhibition of baicalin on metabolism of phenacetin, a probe of CYP1A2, in human liver microsomes and in rats. PLoS One. 2014;9(2):e89752.Google Scholar
  52. 52.
    Noh K, Nepal MR, Jeong KS, Kim SA, Um YJ, Seo CS, Kang MJ, Park PH, Kang W, Jeong HG, Jeong TC. Effects of baicalin on oral pharmacokinetics of caffeine in rats. Biomol Ther (Seoul). 2015;23(2):201–6.Google Scholar
  53. 53.
    Cheng ZY, Tian X, Gao J, Li HM, Jia LJ, Qiao HL. Contribution of baicalin on the plasma protein binding displacement and CYP3A activity inhibition to the pharmacokinetic changes of nifedipine in rats in vivo and in vitro. PLoS One. 2014;9(1):e87234.Google Scholar
  54. 54.
    He L, Wang Z, Wang Y, Liu X, Yang Y, Gao Y, Wang X, Liu B, Wang X. Studies on the interaction between promethazine and human serum albumin in the presence of flavonoids by spectroscopic and molecular modeling techniques. Colloids Surf B. 2016;145:820–9.Google Scholar
  55. 55.
    Wang X, Guo XY, Xu L, Liu B, Zhou LL, Wang XF, Wang D, Sun T. Studies on the competitive binding of cleviprex and flavonoids to plasma protein by multi-spectroscopic methods: a prediction of food-drug interaction. J Photochem Photobiol B. 2017;175:192–9.Google Scholar
  56. 56.
    Wang X, He LL, Liu B, Wang X, Xu L, Wang XF, Sun T. Decrease of the affinity of theophylline bind to serum proteins induced by flavonoids and their synergies on protein conformation. Int J Biol Macromol. 2018;107(Pt A):1066–73.Google Scholar
  57. 57.
    Wang X, Liu Y, He LL, Liu B, Zhang SY, Ye X, Jing JJ, Zhang JF, Gao M, Wang X. Spectroscopic investigation on the food components-drug interaction: the influence of flavonoids on the affinity of nifedipine to human serum albumin. Food Chem Toxicol. 2015;78:42–51.Google Scholar
  58. 58.
    Liu B, Zhang J, Hao A, Xu L, Wang D, Ji H, Sun S, Chen B, Liu B. The increased binding affinity of curcumin with human serum albumin in the presence of rutin and baicalin: a potential for drug delivery system. Spectrochim Acta Part A Mol Biomol Spectrosc. 2016;155:88–94.Google Scholar
  59. 59.
    Li HT, Wu XD, Davey AK, Wang J. Antihyperglycemic effects of baicalin on streptozotocin—nicotinamide induced diabetic rats. Phytother Res. 2011;25(2):189–94.Google Scholar
  60. 60.
    Liu L, Deng YX, Liang Y, Pang XY, Liu XD, Liu YW, Yang JS, Xie L, Wang GJ. Increased oral AUC of baicalin in streptozotocin-induced diabetic rats due to the increased activity of intestinal beta-glucuronidase. Planta Med. 2010;76(1):70–5.Google Scholar
  61. 61.
    He MY, Deng YX, Shi QZ, Zhang XJ, Lv Y. Comparative pharmacokinetic investigation on baicalin and wogonoside in type 2 diabetic and normal rats after oral administration of traditional Chinese medicine Huanglian Jiedu decoction. J Ethnopharmacol. 2014;155(1):334–42.Google Scholar
  62. 62.
    Wei X, Tao J, Cui X, Jiang S, Qian D, Duan J. Comparative pharmacokinetics of six major bioactive components in normal and type 2 diabetic rats after oral administration of Sanhuang Xiexin Decoction extracts by UPLC-TQ MS/MS. J Chromatogr B. 2017;1061–1062:248–55.Google Scholar
  63. 63.
    Zhang C, Xu Y, Xiang D, Yang J, Lei K, Liu D. Pharmacokinetic characteristics of baicalin in rats with 17α-ethynyl-estradiol-induced intrahepatic cholestasis. Curr Med Sci. 2018;38(1):167–73.Google Scholar
  64. 64.
    Wei Y, Guo J, Zheng X, Wu J, Zhou Y, Yu Y, Ye Y, Zhang L, Zhao L. Preparation, pharmacokinetics and biodistribution of baicalin-loaded liposomes. Int J Nanomed. 2014;9:3623–30.Google Scholar
  65. 65.
    Zhang S, Wang J, Pan J. Baicalin-loaded PEGylated lipid nanoparticles: characterization, pharmacokinetics, and protective effects on acute myocardial ischemia in rats. Drug Deliv. 2016;23(9):3696–703.Google Scholar
  66. 66.
    Liu Z, Zhang L, He Q, Liu X, Okeke CI, Tong L, Guo L, Yang H, Zhang Q, Zhao H, Gu X. Effect of baicalin-loaded PEGylated cationic solid lipid nanoparticles modified by OX26 antibody on regulating the levels of baicalin and amino acids during cerebral ischemia-reperfusion in rats. Int J Pharm. 2015;489(1–2):131–8.Google Scholar
  67. 67.
    Yue PF, Li Y, Wan J, Wang Y, Yang M, Zhu WF, Wang CH, Yuan HL. Process optimization and evaluation of novel baicalin solid nanocrystals. Int J Nanomed. 2013;8:2961–73.Google Scholar
  68. 68.
    Zhao L, Wei Y, Huang Y, He B, Zhou Y, Fu J. Nanoemulsion improves the oral bioavailability of baicalin in rats: in vitro and in vivo evaluation. Int J Nanomed. 2013;8:3769–79.Google Scholar
  69. 69.
    Chen Y, Minh LV, Liu J, Angelov B, Drechsler M, Garamus VM, Willumeit-Römer R, Zou A. Baicalin loaded in folate-PEG modified liposomes for enhanced stability and tumor targeting. Colloids Surf B. 2016;140:74–82.Google Scholar
  70. 70.
    Liu Z, Zhao H, Shu L, Zhang Y, Okeke C, Zhang L, Li J, Li N. Preparation and evaluation of Baicalin-loaded cationic solid lipid nanoparticles conjugated with OX26 for improved delivery across the BBB. Drug Dev Ind Pharm. 2015;41(3):353–61.Google Scholar
  71. 71.
    Wu L, Bi Y, Wu H. Formulation optimization and the absorption mechanisms of nanoemulsion in improving baicalin oral exposure. Drug Dev Ind Pharm. 2018;44(2):266–75.Google Scholar
  72. 72.
    Li N, Je YJ, Yang M, Jiang XH, Ma JH. Pharmacokinetics of baicalin-phospholipid complex in rat plasma and brain tissues after intranasal and intravenous administration. Pharmazie. 2011;66(5):374.Google Scholar
  73. 73.
    Li B, Wen M, Li W, He M, Yang X, Li S. Preparation and characterization of baicalin-poly -vinylpyrrolidone coprecipitate. Int J Pharmaceut. 2011;408(1–2):91–6.Google Scholar
  74. 74.
    Li J, Jiang Q, Deng P, Chen Q, Yu M, Shang J, Li W. The formation of a host-guest inclusion complex system between beta-cyclodextrin and baicalin and its dissolution characteristics. J Pharm Pharmacol. 2017;69(6):663–74.Google Scholar
  75. 75.
    Zhang H, Yang X, Zhao L, Jiao Y, Liu J, Zhai G. In vitro and in vivo study of Baicalin-loaded mixed micelles for oral delivery. Drug Deliv. 2016;23(6):1933–9.Google Scholar
  76. 76.
    Wu H, Long X, Yuan F, Chen L, Pan S, Liu Y, Stowell Y, Li X. Combined use of phospholipid complexes and self-emulsifying microemulsions for improving the oral absorption of a BCS class IV compound, baicalin. Acta Pharm Sin B. 2014;4(3):217–26.Google Scholar
  77. 77.
    Xie Y, Hu Y, Shen M, Ma Y, Zhong J, Zhang N, Tao J, Wei L. Dissolution and pharmacokinetic properties of alkaloids and flavonoids in a Xiexin multiple-unit drug delivery system. Drug Res (Stuttg). 2013;63(10):501–9.Google Scholar
  78. 78.
    Zhang ZQ, Liua W, Zhuang L, Wang J, Zhang S. Comparative pharmacokinetics of baicalin, wogonoside, baicalein and wogonin in plasma after oral administration of pure baicalin, radix Scutellariae and Scutellariae–Paeoniae couple extracts in normal and ulcerative colitis rats. Iran J Pharm Res. 2013;12(3):399–409.Google Scholar
  79. 79.
    Fan L, Zhang W, Guo D, Tan ZR, Xu P, Li Q, Liu YZ, Zhang L, He TY, Hu DL, Wang D, Zhou HH. The effect of herbal medicine baicalin on pharmacokinetics of rosuvastatin, substrate of organic anion-transporting polypeptide 1B1. Clin Pharmacol Ther. 2008;83(3):471–6.Google Scholar
  80. 80.
    Li B, He M, Li W, Luo Z, Guo Y, Li Y, Zang C, Wang B, Li F, Li S, Ji P. Dissolution and pharmacokinetics of baicalin-polyvinylpyrrolidone coprecipitate. J Pharm Pharmacol. 2013;65(11):1670–8.Google Scholar
  81. 81.
    Jin SY, Han J, Jin SX, Lv QY, Bai JX, Chen HG, Li RS, Wu W, Yuan HL. Characterization and evaluation in vivo, of baicalin-nanocrystals prepared by an ultrasonic-homogenization-fluid bed drying method. Chin J, Nat Med. 2014;12(1):71–80.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Pharmacy, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  2. 2.Institute of Pharmaceutics, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina

Personalised recommendations