Advertisement

Liver Perfusion Modifies Gd-DTPA and Gd-BOPTA Hepatocyte Concentrations Through Transfer Clearances Across Sinusoidal Membranes

  • Jean-Luc Daire
  • Benjamin Leporq
  • Valérie Vilgrain
  • Bernard E. Van Beers
  • Sabine Schmidt
  • Catherine M. Pastor
Original Research Article

Abstract

Background and Objectives

Gadobenate dimeglumine (Gd-BOPTA) is a commercialised hepatobiliary contrast agent used during liver magnetic resonance imaging (MRI) to detect liver diseases. It enters into human hepatocytes through organic anion transporting polypeptides (OATP1B1/B3) and crosses the canalicular transporter multiple resistance-associated protein 2 (MRP2) to be excreted into bile canaliculi. Gd-BOPTA can return to sinusoids via the sinusoidal transporters MRP3/MRP4. Hepatocyte concentrations of Gd-BOPTA depend on three clearances: the sinusoidal clearance or volume of sinusoidal blood cleared of drugs per unit of time and two hepatocyte clearances (into bile canaliculi or back to sinusoids) or volume of hepatocytes cleared of drugs per unit of time in the respective liver compartments. The present study investigates whether changing liver blood flow modifies hepatocyte concentrations when plasma concentrations do not change.

Methods

We perfused normal rat livers at various portal flow rates (24, 30, and 36 ml/min) with 200 µM Gd-BOPTA and measured sinusoidal clearances, hepatocyte clearances, and hepatocyte concentrations of Gd-BOPTA.

Results

We showed that varying portal flow rates changes the sinusoidal clearance of Gd-BOPTA despite its low extraction ratio. Portal flow rates do not modify Gd-BOPTA clearance from hepatocytes into bile canaliculi but can change hepatocyte clearance back to sinusoids.

Conclusion

At a given perfused concentration, portal flow rates modify Gd-BOPTA hepatocyte concentrations, a result important to consider when interpreting liver imaging.

Keywords

Common Bile Duct Hepatic Vein Extraction Ratio Bile Canaliculus Liver Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Compliance with Ethical Standards

Funding

This study was funded by the Swiss National Foundation (Grant N° 126030).

Conflict of interest

Jean-Luc Daire, Benjamin Leporq, Valérie Vilgrain, Bernard E Van Beers, Sabine Schmidt, and Catherine M Pastor have no conflicts of interest to declare.

Ethical approval

Study approved by the Geneva animal welfare committee and veterinary office. All institutional and national guidelines for the care of the laboratory animals were followed.

References

  1. 1.
    Paumgartner G. Biliary physiology and disease: reflections of a physician-scientist. Hepatology. 2010;51:1095–106.CrossRefPubMedGoogle Scholar
  2. 2.
    Pastor CM, Müllhaupt B, Stieger B. The role of organic anion transporters in diagnosing liver diseases by magnetic resonance imaging. Drug Metab Dispos. 2014;42:675–84.CrossRefPubMedGoogle Scholar
  3. 3.
    Leonhardt M, Keiser M, Oswald S, Kühn J, Jia J, Grube M, et al. Hepatic uptake of the magnetic resonance imaging contrast agent Gd-EOB-DTPA: role of human organic anion transporters. Drug Metab Dispos. 2010;38:1024–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Nassif A, Jia J, Keiser M, Oswald S, Modess C, Nagel S, et al. Visualization of hepatic uptake transporter function in healthy subjects by using gadoxetic acid-enhanced MR imaging. Radiology. 2012;264:741–50.CrossRefPubMedGoogle Scholar
  5. 5.
    Jia J, Puls D, Oswald S, Jedlitschky G, Kühn JP, Weitschies W, et al. Characterization of the intestinal and hepatic uptake/efflux transport of the magnetic resonance imaging contrast agent gadolinium-ethoxylbenzyl-diethylenetriamine-pentaacetic acid. Invest Radiol. 2014;49:78–86.CrossRefPubMedGoogle Scholar
  6. 6.
    Daali Y, Millet P, Dayer P, Pastor CM. Evidence of drug-drug interactions through uptake and efflux transport systems in rat hepatocytes: implications for cellular concentrations of competing drugs. Drug Metab Dispos. 2013;41:1548–56.CrossRefPubMedGoogle Scholar
  7. 7.
    Aime S, Caravan P. Biodistribution of gadolinium-based contrast agents, including gadolinium deposition. J Magn Reson Imaging. 2009;30:1259–67.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Planchamp C, Beyer GJ, Slosman DO, Terrier F, Pastor CM. Direct evidence of the temperature dependence of Gd-BOPTA transport in the intact rat liver. Appl Radiat Isotopes. 2005;62:943–9.CrossRefGoogle Scholar
  9. 9.
    Pastor CM. How transfer rates generate Gd-BOPTA concentrations in rat liver compartments: implications for clinical liver imaging with hepatobiliary contrast agents. Contrast Media Mol Imaging. 2016;11:291–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Blouin A, Bolender RP, Weibel ER. Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma. A stereological study. J Cell Biol. 1977;72:441–55.CrossRefPubMedGoogle Scholar
  11. 11.
    Boyer JL. Bile formation and secretion. Compr Physiol. 2013;3:1035–78.PubMedGoogle Scholar
  12. 12.
    Klabunde RE. Cardiovascular physiology concepts. http://www.cvphysiology.com/Microcirculation/M016.htm. Assessed on October 2, 2016.
  13. 13.
    Vollmar B, Menger MD. The hepatic microcirculation: mechanistic contributions and therapeutic targets in liver injury and repair. Physiol Rev. 2009;89:1269–339.CrossRefPubMedGoogle Scholar
  14. 14.
    Fraser R, Bowler LM, Day WA, Dobbs B, Johnson HD, Lee D. High perfusion pressure damages the sieving ability of sinusoidal endothelium in rat livers. Br J Exp Pathol. 1980;61:222–8.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Nopanitaya W, Lamb JC, Grisham JW, Carson JL. Effect of hepatic venous outflow obstruction on pores and fenestration in sinusoidal endothelium. Br J Exp Pathol. 1976;57:604–9.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Liu L, Pang KS. An integrated approach to model hepatic drug clearance. Eur J Pharm Sci. 2006;29:215–30.CrossRefPubMedGoogle Scholar
  17. 17.
    Chu X, Korzekwa K, Elsby R, Fenner K, Galetin A, Lai Y, et al. Intracellular drug concentrations and transporters: measurement, modeling, and implications for the liver. Clin Pharmacol Ther. 2013;94:126–41.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Donner MG, Keppler D. Up-regulation of basolateral multidrug resistance protein 3 (Mrp3) in cholestatic rat liver. Hepatology. 2001;34:351–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Vander Borght S, Libbrecht L, Blokzijl H, Faber KN, Moshage H, Aerts R, et al. Diagnostic and pathogenetic implications of the expression of hepatic transporters in focal lesions occurring in normal liver. J Pathol. 2005;207:471–82.CrossRefPubMedGoogle Scholar
  20. 20.
    Yoneda N, Matsui O, Kitao A, Kozaka K, Gabata T, Sasaki M, et al. Beta-catenin-activated hepatocellular adenoma showing hyperintensity on hepatobiliary-phase gadoxetic-enhanced magnetic resonance imaging and overexpression of OATP8. Jpn J Radiol. 2012;30:777–82.CrossRefPubMedGoogle Scholar
  21. 21.
    Van Beers BE, Pastor CM, Hussain HK. Primovist, Eovist: what to expect? J Hepatol. 2012;57:421–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Brouwer KL, Keppler D, Hoffmaster KA, Bow DA, Cheng Y, Lai Y, et al. In vitro methods to support transporter evaluation in drug discovery and development. Clin Pharmacol Ther. 2013;94:95–112.CrossRefPubMedGoogle Scholar
  23. 23.
    Kitao A, Zen Y, Matsui O, Gabata T, Kobayashi S, Koda W, et al. Hepatocellular carcinoma: signal intensity at gadoxetic acid-enhanced MR Imaging–correlation with molecular transporters and histopathologic features. Radiology. 2010;256:817–26.CrossRefPubMedGoogle Scholar
  24. 24.
    Tsuboyama T, Onishi H, Kim T, Akita H, Hori M, Tatsumi M, et al. Hepatocellular carcinoma: hepatocyte-selective enhancement at gadoxetic acid-enhanced MR Imaging—correlation with expression of sinusoidal and canalicular transporters and bile accumulation. Radiology. 2010;255:824–33.CrossRefPubMedGoogle Scholar
  25. 25.
    Vilgrain V, Van Beers BE, Pastor CM. Insights into the diagnosis of hepatocellular carcinomas with hepatobiliary MRI. J Hepatol. 2016;64:708–16.CrossRefPubMedGoogle Scholar
  26. 26.
    Pastor CM, Morel DR, Billiar TR. Oxygen supply dependence of urea production in the isolated perfused rat liver. Am J Resp Crit Care Med. 1998;157:796–802.CrossRefPubMedGoogle Scholar
  27. 27.
    Bonnaventure P, Pastor CM. Quantification of drug transport function across the multiple resistance-associated protein 2 (Mrp2) in rat livers. Int J Mol Sci. 2015;16:135–47.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jean-Luc Daire
    • 1
  • Benjamin Leporq
    • 2
  • Valérie Vilgrain
    • 1
    • 2
    • 3
  • Bernard E. Van Beers
    • 1
    • 2
    • 3
  • Sabine Schmidt
    • 4
  • Catherine M. Pastor
    • 2
    • 3
    • 5
  1. 1.Département de RadiologieHôpitaux Universitaires Paris Nord Val-de-Seine BeaujonClichyFrance
  2. 2.Inserm U1149ParisFrance
  3. 3.University Paris DiderotParisFrance
  4. 4.Département de RadiologieCentre Hospitalier Universitaire VaudoisLausanneSwitzerland
  5. 5.Département d’Imagerie et des Sciences de l’InformationHôpitaux Universitaires de GenèveGenevaSwitzerland

Personalised recommendations