Advertisement

A comparison of the pharmacokinetics of three different preparations of total flavones of Hippophae rhamnoides in beagle dogs after oral administration

  • Jingze Duan
  • Yang Dang
  • Houjun Meng
  • Huizhen Wang
  • Ping Ma
  • Guowen Li
  • Tao Wu
  • Yan XieEmail author
Original Paper

Abstract

Pharmacokinetic properties of isorhamnetin, quercetin, and kaempferol in three different total flavones of Hippophae rhamnoides (TFH) preparations were compared after oral administration to beagle dogs by a UPLC–MS method. The pharmacokinetic results showed that C max of isorhamnetin and quercetin in TFH solid dispersion (TFH-SD) and TFH self-emulsifying (TFH-SE) preparations was significantly enhanced than that in TFH preparations (p < 0.05). The AUCs of isorhamnetin and quercetin in TFH-SD were 5.9- and 3.1-fold higher than that of TFH, while the AUCs of isorhamnetin and quercetin in TFH-SE were 3.4- and 2.4-fold higher than that of TFH. These findings suggested that the oral bioavailability of isorhamnetin and quercetin in beagle dogs can be significantly increased in TFH-SD and TFH-SE preparations compared to TFH preparations, which was helpful to explore the new forms for oral administration TFH and explain their in vivo processes.

Keywords

Total flavones of Hippophae rhamnoides UPLC–MS Solid dispersion Self-emulsifying Pharmacokinetics Beagle dogs 

Notes

Acknowledgments

This study was sponsored by the National Science Foundation of China (81303304), the Innovation Program of Shanghai Municipal Education Commission (14YZ057), the Specialized Research Fund for the Doctoral Program of Higher Education (20133107120006), and the Medical Program of Hongkou District (1301-01).

Supplementary material

13318_2015_254_MOESM1_ESM.pdf (1.9 mb)
Supplementary material 1 (PDF 1946 kb)

References

  1. Alexopoulou E, Georgopoulos A, Kagkadis KA, Demetzos C (2006) Preparation and characterization of lyophilized liposomes with incorporated quercetin. J Liposome Res 16:17–25CrossRefPubMedGoogle Scholar
  2. Basu M, Prasad R, Jayamurthy P, Pal K, Arumughan C, Sawhney RC (2007) Anti-atherogenic effects of seabuckthorn (Hippophaea rhamnoides) seed oil. Phytomedicine 14:770–777CrossRefPubMedGoogle Scholar
  3. Bose S, Michniak-Kohn B (2012) Preparation and characterization of lipid based nanosystems for topical delivery of quercetin. Eur J Pharm Sci 48:442–452CrossRefPubMedGoogle Scholar
  4. Cermak R, Landgraf S, Wolffram S (2003) The bioavailability of quercetin in pigs depends on the glycoside moiety and on dietary factors. J Nutr 133:2802–2807PubMedGoogle Scholar
  5. Chauhan AS, Negi PS, Rarnteke RS (2007) Antioxidant and antibacterial activities of aqueous extract of Seabuckthorn (Hippophae rhamnoides) seeds. Fitoterapia 78:590–592CrossRefPubMedGoogle Scholar
  6. Cornaire G, Woodley J, Hermann P, Cloarec A, Arellano C, Houin G (2004) Impact of excipients on the absorption of P-glycoprotein substrates in vitro and in vivo. Int J Pharm 278:119–131CrossRefPubMedGoogle Scholar
  7. Costa ARD, Marquiafavel FS, Vaz MMDLL, Rocha BA, Bueno PCP, Amaral PLM, Barud HD, Berreta-Silva AA (2011) Quercetin-PVP K25 solid dispersions: preparation, thermal characterization and antioxidant activity. J Therm Anal Calorim 104:273–278CrossRefGoogle Scholar
  8. Gugler R, Leschik M, Dengler HJ (1975) Disposition of quercetin in man after single oral and intravenous doses. Eur J Clin Pharmacol 9:229–234CrossRefPubMedGoogle Scholar
  9. Hsu YW, Tsai CF, Chen WK, Lu FJ (2009) Protective effects of seabuckthorn (Hippophae rhamnoides L.) seed oil against carbon tetrachloride-induced hepatotoxicity in mice. Food Chem Toxicol 47:2281–2288CrossRefPubMedGoogle Scholar
  10. Iosio T, Voinovich D, Perissutti B, Serdoz F, Hasa D, Grabnar I, Acqua SD, Zara GP, Muntoni E, Pinto JF (2011) Oral bioavailability of silymarin phytocomplex formulated as self-emulsifying pellets. Phytomedicine 18:505–512CrossRefPubMedGoogle Scholar
  11. Kakran M, Shegokar R, Sahoo NG, Shaal LA, Li L, Muller RH (2012) Fabrication of quercetin nanocrystals: comparison of different methods. Eur J Pharm Biopharm 80:113–121CrossRefPubMedGoogle Scholar
  12. Khaled KA, El-Sayed YM, Al-Hadiya BM (2003) Disposition of the flavonoid quercetin in rats after single intravenous and oral doses. Drug Dev Ind Pharm 29:397–403CrossRefPubMedGoogle Scholar
  13. Li W, Yi S, Wang Z, Chen S, Xin S, Xie J, Zhao C (2011) Self-nanoemulsifying drug delivery system of persimmon leaf extract: optimization and bioavailability studies. Int J Pharm 420:161–171CrossRefPubMedGoogle Scholar
  14. Maheshwari DT, Kumar MSY, Verma SK, Singh VK, Singh SN (2011) Antioxidant and hepatoprotective activities of phenolic rich fraction of Seabuckthorn (Hippophae rhamnoides L.) leaves. Food Chem Toxicol 49:2422–2428CrossRefPubMedGoogle Scholar
  15. Martignoni M, Groothuis GM, de Kanter R (2006) Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol 2:875–894CrossRefPubMedGoogle Scholar
  16. Moon YJ, Wang L, DiCenzo R, Morris ME (2008) Quercetin pharmacokinetics in humans. Biopharm Drug Dispos 29:205–217CrossRefPubMedGoogle Scholar
  17. Morand C, Manach C, Crespy V, Remesy C (2000) Quercetin 3-O-beta-glucoside is better absorbed than other quercetin forms and is not present in rat plasma. Free Radic Res 33:667–676CrossRefPubMedGoogle Scholar
  18. Ofer M, Wolffram S, Koggel A, Spahn-Langguth H, Langguth P (2005) Modulation of drug transport by selected flavonoids: involvement of P-gp and OCT? Eur J Pharm Sci 25:263–271CrossRefPubMedGoogle Scholar
  19. Piskula MK (2000) Factors affecting flavonoids absorption. BioFactors 12:175–180CrossRefPubMedGoogle Scholar
  20. Plotas P, Anastasopoulos C, Makri OE, Leotsinidis M, Georgakopoulos CD (2014) A UPLC–MS method for the determination of ofloxacin concentrations in aqueous humor. Anal Chem Insights 9:27–32PubMedPubMedCentralGoogle Scholar
  21. Rangel-Ordonez L, Noldner M, Schubert-Zsilavecz M, Wurglics M (2010) Plasma levels and distribution of flavonoids in rat brain after single and repeated doses of standardized Ginkgo biloba extract EGb 761®. Planta Med 76:1683–1690CrossRefPubMedGoogle Scholar
  22. Reinboth M, Wolffram S, Abraham G, Ungemach FR, Cermak R (2010) Oral bioavailability of quercetin from different quercetin glycosides in dogs. Br J Nutr 104:198–203CrossRefPubMedGoogle Scholar
  23. Shi R, Qiao S, Yu DQ, Shi XW, Liu M, Jiang XJ, Wang Q, Zhang LT (2011) Simultaneous determination of five flavonoids from Scutellaria Barbata extract in rat plasma by LC-MS/MS and its application to pharmacokinetic study. J Chromatogr B Anal Technol Biomed Life Sci 879:1625–1632CrossRefGoogle Scholar
  24. Shukla SK, Chaudhary P, Kumar IP, Samanta N, Afrin F, Gupta ML, Sharma UK, Sinha AK, Sharma YK, Sharma RK (2006) Protection from radiation-induced mitochondrial and genomic DNA damage by an extract of Hippophae rhamnoides. Environ Mol Mutagen 47:647–656CrossRefPubMedGoogle Scholar
  25. Smith AJ, Kavuru P, Wojtas L, Zaworotko MJ, Shytle RD (2011) Cocrystals of quercetin with improved solubility and oral bioavailability. Mol Pharm 8:1867–1876CrossRefPubMedGoogle Scholar
  26. Sun B, Sun GB, Xiao J, Chen RC, Wang X, Wu Y, Cao L, Yang ZH, Sun XB (2012) Isorhamnetin inhibits H(2)O(2)-induced activation of the intrinsic apoptotic pathway in H9c2 cardiomyocytes through scavenging reactive oxygen species and ERK inactivation. J Cell Biochem 113:473–485CrossRefPubMedGoogle Scholar
  27. Tian S, He G, Song J, Wang S, Xin W, Zhang D, Du G (2012) Pharmacokinetic study of baicalein after oral administration in monkeys. Fitoterapia 83:532–540CrossRefPubMedGoogle Scholar
  28. Vo CL, Park C, Lee BJ (2013) Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur J Pharm Biopharm 85:799–813CrossRefPubMedGoogle Scholar
  29. Walle T, Otake Y, Walle UK, Wilson FA (2000) Quercetin glucosides are completely hydrolyzed in ileostomy patients before absorption. J Nutr 130:2658–2661PubMedGoogle Scholar
  30. Wang Y, Cao J, Zeng S (2005) Involvement of P-glycoprotein in regulating cellular levels of Ginkgo flavonols: quercetin, kaempferol, and isorhamnetin. J Pharm Pharmacol 57:751–758CrossRefPubMedGoogle Scholar
  31. Wang XD, Xia HJ, Xing F, Deng GF, Shen Q, Zeng S (2009) A highly sensitive and robust UPLC-MS with electrospray ionization method for quantitation of taxifolin in rat plasma. J Chromatogr B Anal J Mol Biol 877:1778–1786CrossRefGoogle Scholar
  32. Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, Porter CJ (2013) Strategies to address low drug solubility in discovery and development. Pharmacol Rev 65:315–499CrossRefPubMedGoogle Scholar
  33. Wu J, Xing H, Tang D, Gao Y, Yin X, Du Q, Jiang X, Yang D (2012) Simultaneous determination of nine flavonoids in beagle dog by HPLC with DAD and application of Ginkgo biloba extracts on the pharmacokinetic. Acta Chromatogr 24:627–642CrossRefGoogle Scholar
  34. Xie Y, Li G, Yuan X, Cai Z, Rong R (2009a) Preparation and in vitro evaluation of solid dispersions of total flavones of Hippophae rhamnoides L. AAPS PharmSciTech 10:631–640CrossRefPubMedPubMedCentralGoogle Scholar
  35. Xie Y, Rong R, Li G, Yuan X, Wang J (2009b) Studies on self-microemulsifying drug preparations of total flavones of Hippophae rhamnoides. Zhongguo Zhong Yao Za Zhi 34:43–46PubMedGoogle Scholar
  36. Xu J, Zhang Q, Zhao L, Wang Y, Xue L, Han T, Zheng C, Qin L (2012) Quantitative determination and pharmacokinetic study of casticin in rat plasma by liquid chromatography–mass spectrometry. J Pharm Biomed Anal 61:242–246CrossRefPubMedGoogle Scholar
  37. Yue ME, Jiang TF, Shi YP (2004) Fast determination of flavonoids in Hippophae rhamnoides and its medicinal preparation by capillary zone electrophoresis using dimethyl-beta-cyclodextrin as modifier. Talanta 62:695–699CrossRefPubMedGoogle Scholar
  38. Zhang Q, Cui H (2005) Simultaneous determination of quercetin, kaempferol, and isorhamnetin in phytopharmaceuticals of Hippophae rhamnoides L. by high-performance liquid chromatography with chemiluminescence detection. J Sep Sci 28:1171–1178CrossRefPubMedGoogle Scholar
  39. Zhang L, Lin G, Zuo Z (2004) High-performance liquid chromatographic method for simultaneous determination of baicalein and baicalein 7-glucuronide in rat plasma. J Pharm Biomed Anal 36:637–641CrossRefPubMedGoogle Scholar
  40. Zhang QY, Kaminsky LS, Dunbar D, Zhang J, Ding X (2007) Role of small intestinal cytochromes p450 in the bioavailability of oral nifedipine. Drug Metab Dispos 35:1617–1623CrossRefPubMedGoogle Scholar
  41. Zhang HS, Zhang M, Yu LH, Zhao Y, He NW, Yang XB (2012) Antitumor activities of quercetin and quercetin-5′,8-disulfonate in human colon and breast cancer cell lines. Food Chem Toxicol 50:1589–1599CrossRefPubMedGoogle Scholar
  42. Zhao G, Duan J, Xie Y, Lin G, Luo H, Li G, Yuan X (2013) Effects of solid dispersion and self-emulsifying formulations on the solubility, dissolution, permeability and pharmacokinetics of isorhamnetin, quercetin and kaempferol in total flavones of Hippophae rhamnoides L. Drug Dev Ind Pharm 39:1037–1045CrossRefPubMedGoogle Scholar
  43. Zuo Z, Zhang L, Zhou L, Chang Q, Chow M (2006) Intestinal absorption of hawthorn flavonoids—in vitro, in situ and in vivo correlations. Life Sci 79:2455–2462CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jingze Duan
    • 1
    • 2
  • Yang Dang
    • 1
  • Houjun Meng
    • 1
    • 2
  • Huizhen Wang
    • 1
  • Ping Ma
    • 3
  • Guowen Li
    • 2
    • 4
  • Tao Wu
    • 2
  • Yan Xie
    • 1
    Email author
  1. 1.Research Center for Health and NutritionShanghai University of Traditional Chinese MedicineShanghaiPeople’s Republic of China
  2. 2.Institute of Chinese Materia MedicaShanghai University of Traditional Chinese MedicineShanghaiChina
  3. 3.Global Pharmaceutical Research and Development, Hospira Inc.McphersonUSA
  4. 4.Pharmacy DepartmentShanghai TCM-integrated HospitalShanghaiChina

Personalised recommendations