Physiologically based modeling of the pharmacokinetics of acetaminophen and its major metabolites in humans using a Bayesian population approach

Abstract

The principal aim of this study was to develop, validate, and demonstrate a physiologically based pharmacokinetic (PBPK) model to predict and characterize the absorption, distribution, metabolism, and excretion of acetaminophen (APAP) in humans. A PBPK model was created that included pharmacologically and toxicologically relevant tissue compartments and incorporated mechanistic descriptions of the absorption and metabolism of APAP, such as gastric emptying time, cofactor kinetics, and transporter-mediated movement of conjugated metabolites in the liver. Through the use of a hierarchical Bayesian framework, unknown model parameters were estimated using a large training set of data from human pharmacokinetic studies, resulting in parameter distributions that account for data uncertainty and inter-study variability. Predictions from the model showed good agreement to a diverse test set of data across several measures, including plasma concentrations over time, renal clearance, APAP absorption, and pharmacokinetic and exposure metrics. The utility of the model was then demonstrated through predictions of cofactor depletion, dose response of several pharmacokinetic endpoints, and the relationship between APAP biomarker levels in the plasma and those in the liver. The model addressed several limitations in previous PBPK models for APAP, and it is anticipated that it will be useful in predicting the pharmacokinetics of APAP in a number of contexts, such as extrapolating across doses, estimating internal concentrations, quantifying population variability, assessing possible impacts of drug coadministration, and, when coupled with a suitable pharmacodynamic model, predicting toxicity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Ameer B, Greenblatt DJ, Divoll M, Abernethy DR, Shargel L (1981) High-performance liquid chromatographic determination of acetaminophen in plasma: single-dose pharmacokinetic studies. J Chromatogr 226:224–230

    CAS  Article  PubMed  Google Scholar 

  2. Ben-Shachar R, Chen Y, Luo S, Hartman C, Reed M, Nijhout HF (2012) The biochemistry of acetaminophen hepatotoxicity and rescue: a mathematical model. Theor Biol Med Model 9:55

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Bois FY (2009) GNU MCSim: Bayesian statistical inference for SBML-coded systems biology models. Bioinformatics 25:1453–1454

    CAS  Article  PubMed  Google Scholar 

  4. Brown RP, Delp MD, Lindstedt SL, Rhomberg LR, Beliles RP (1997) Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health 13:407–484

    CAS  Article  PubMed  Google Scholar 

  5. Campbell JL, Clewell RA, Gentry PR, Andersen ME, Clewell HJ (2012) Physiologically based pharmacokinetic/toxicokinetic modeling. Methods Mol Biol 929:439–499

    CAS  Article  PubMed  Google Scholar 

  6. Chan MT, Anderson PJ, Chan JC, Lau GS, Critchley JA (1997) Single-dose pharmacokinetics of paracetamol and its conjugates in Chinese non-insulin-dependent diabetic patients with renal impairment. Eur J Clin Pharmacol 52:285–288

    CAS  Article  PubMed  Google Scholar 

  7. Chen L, Mohr SN, Yang CS (1996) Decrease of plasma and urinary oxidative metabolites of acetaminophen after consumption of watercress by human volunteers. Clin Pharmacol Ther 60:651–660

    CAS  Article  PubMed  Google Scholar 

  8. Chiew A, Day P, Salonikas C, Naidoo D, Graudins A, Thomas R (2010) The comparative pharmacokinetics of modified-release and immediate-release paracetamol in a simulated overdose model. Emerg Med Aust 22:548–555

    Article  Google Scholar 

  9. Chiu WA, Okino MS, Evans MV (2009) Characterizing uncertainty and population variability in the toxicokinetics of trichloroethylene and metabolites in mice, rats, and humans using an updated database, physiologically based pharmacokinetic (PBPK) model, and Bayesian approach. Toxicol Appl Pharmacol Elsevier BV 241:36–60

  10. Clements JA, Heading RC, Nimmo WS, Prescott LF (1978) Kinetics of acetaminophen absorption and gastric emptying in man. Clin Pharmacol Ther 24:420–431

    CAS  Article  PubMed  Google Scholar 

  11. Clements JA, Critchley JA, Prescott LF (1984) The role of sulphate conjugation in the metabolism and disposition of oral and intravenous paracetamol in man. Br J Clin Pharmacol 18:481–485

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Critchley JA, Nimmo GR, Gregson CA, Woolhouse NM, Prescott LF (1986) Inter-subject and ethnic differences in paracetamol metabolism. Br J Clin Pharmacol 22:649–657

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Critchley JA, Critchley LA, Anderson PJ, Tomlinson B (2005) Differences in the single-oral-dose pharmacokinetics and urinary excretion of paracetamol and its conjugates between Hong Kong Chinese and Caucasian subjects. J Clin Pharm Ther 30:179–184

    CAS  Article  PubMed  Google Scholar 

  14. Edginton AN, Schmitt W, Willmann S (2006) Development and evaluation of a generic physiologically based pharmacokinetic model for children. Clin Pharmacokinet 45:1013–1034

    CAS  Article  PubMed  Google Scholar 

  15. Esteban A, Calvo R, Pérez-Mateo M (1996) Paracetamol metabolism in two ethnically different Spanish populations. Eur J Drug Metab Pharmacokinet 21:233–239

    CAS  Article  PubMed  Google Scholar 

  16. Fong BM, Siu TS, Tam S (2011) Persistently increased acetaminophen concentrations in a patient with acute liver failure. Clin Chem 57:9–11

    CAS  Article  PubMed  Google Scholar 

  17. Forrest JA, Clements JA, Prescott LF (1982) Clinical pharmacokinetics of paracetamol. Clin Pharmacokinet 7:93–107

    CAS  Article  PubMed  Google Scholar 

  18. Geenen S, Yates JWT, Kenna JG, Bois FY, Wilson ID, Westerhoff HV (2013) Multiscale modelling approach combining a kinetic model of glutathione metabolism with PBPK models of paracetamol and the potential glutathione-depletion biomarkers ophthalmic acid and 5-oxoproline in humans and rats. Integr Biol (Camb) 5:877–888

    CAS  Article  Google Scholar 

  19. Gelman A, Shirley K (2011) Inference from simulations and monitoring convergence. In: Brooks S, Gelman A, Jones GL, Meng X-L (eds) Handb. Markov Chain Monte Carlo. Chapman and Hall, UK, pp 163–174

    Google Scholar 

  20. Gwilt J, Robertson A, McChesney E (1963) Determination of blood and other tissue concentrations of paracetamol in dog and man. J Pharm Pharmacol 15:440–444

    CAS  Article  PubMed  Google Scholar 

  21. Hjelle JJ, Klaassen CD (1984) Glucuronidation and biliary excretion of acetaminophen in rats. J Pharmacol Exp Ther 228:407–413

    CAS  PubMed  Google Scholar 

  22. Hjelle JJ, Hazelton GA, Klaassen CD (1985) Acetaminophen decreases adenosine 3′-phosphate 5′-phosphosulfate and uridine diphosphoglucuronic acid in rat liver. Drug Metab Dispos 13:35–41

    CAS  PubMed  Google Scholar 

  23. Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9:90–95

    Article  Google Scholar 

  24. Iida S, Mizuma T, Sakuma N, Hayashi M, Awazu S (1989) Transport of acetaminophen conjugates in isolated rat hepatocytes. Drug Metab Dispos 17:341–344

    CAS  PubMed  Google Scholar 

  25. Itoh H, Nagano T, Takeyama M (2002) Effect of nizatidine on paracetamol and its metabolites in human plasma. J Pharm Pharmacol 54:869–873

    CAS  Article  PubMed  Google Scholar 

  26. Jayasinghe KS, Roberts CJ, Read AE (1986) Is biliary excretion of paracetamol significant in man? Br J Clin Pharmacol 22:363–366

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Jensen LS, Valentine J, Milne RW, Evans AM (2004) The quantification of paracetamol, paracetamol glucuronide and paracetamol sulphate in plasma and urine using a single high-performance liquid chromatography assay. J Pharm Biomed Anal 34:585–593

    CAS  Article  PubMed  Google Scholar 

  28. Jones E, Oliphant TE, Peterson P (2001) SciPy: open source scientific tools for Python. http://www.scipy.org/

  29. Kamali F (1993) The effect of probenecid on paracetamol metabolism and pharmacokinetics. Eur J Clin Pharmacol 45:551–553

    CAS  Article  PubMed  Google Scholar 

  30. Kim D-W, Tan EY, Jin Y, Park S, Hayes M, Demirhan E et al (2011) Effects of imatinib mesylate on the pharmacokinetics of paracetamol (acetaminophen) in Korean patients with chronic myelogenous leukaemia. Br J Clin Pharmacol 71:199–206

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Laine JE, Auriola S, Pasanen M, Juvonen RO (2009) Acetaminophen bioactivation by human cytochrome P450 enzymes and animal microsomes. Xenobiotica 39:11–21

    CAS  Article  PubMed  Google Scholar 

  32. Lau GS, Critchley JA (1994) The estimation of paracetamol and its major metabolites in both plasma and urine by a single high-performance liquid chromatography assay. J Pharm Biomed Anal 12:1563–1572

    CAS  Article  PubMed  Google Scholar 

  33. Levitt DG (2013) Quantitation of small intestinal permeability during normal human drug absorption. BMC Pharmacol Toxicol 14:34

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Lin JH (1994) Dose-dependent pharmacokinetics: experimental observations and theoretical considerations. Biopharm Drug Dispos 15:1–31

    CAS  Article  PubMed  Google Scholar 

  35. Lin J, Lu A (1997) Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacol Rev 49:403–449

    CAS  PubMed  Google Scholar 

  36. Lyons MA, Yang RSH, Mayeno AN, Reisfeld B (2008) Computational toxicology of chloroform: reverse dosimetry using Bayesian inference, Markov chain Monte Carlo simulation, and human biomonitoring data. Environ Health Perspect 116:1040–1046

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Marangoni AG (2002) Enzyme kinetics. Wiley, USA

    Google Scholar 

  38. Martin U, Temple RM, Winney RJ, Prescott LF (1993) The disposition of paracetamol and its conjugates during multiple dosing in patients with end-stage renal failure maintained on haemodialysis. Eur J Clin Pharmacol 45:141–145

    CAS  Article  PubMed  Google Scholar 

  39. Morris ME, Levy G (1984) Renal clearance and serum protein binding of acetaminophen and its major conjugates in humans. J Pharm Sci 73:1038–1041

    CAS  Article  PubMed  Google Scholar 

  40. Mutlib AE, Goosen TC, Bauman JN, Williams JA, Kulkarni S, Kostrubsky S (2006) Kinetics of acetaminophen glucuronidation by UDP-glucuronosyltransferases 1A1, 1A6, 1A9 and 2B15. Potential implications in acetaminophen-induced hepatotoxicity. Chem Res Toxicol 19:701–709

    CAS  Article  PubMed  Google Scholar 

  41. Nagar S, Walther S, Blanchard RL (2006) Sulfotransferase (SULT) 1A1 polymorphic variants *1, *2, and *3 are associated with altered enzymatic activity, cellular phenotype, and protein degradation. Mol Pharmacol 69:2084–2092

    CAS  Article  PubMed  Google Scholar 

  42. Naritomi Y, Terashita S, Kagayama A, Sugiyama Y (2003) Utility of hepatocytes in predicting drug metabolism: comparison of hepatic intrinsic clearance in rats and humans in vivo and in vitro. Drug Metab Dispos 31:580–588

    CAS  Article  PubMed  Google Scholar 

  43. Navid A, Ng DM, Stewart BJ, Wong SE, Lightstone FC (2013) Quantitative In Silico analysis of transient metabolism of acetaminophen and associated causes of hepatotoxicity in humans. In Silico Pharmacol 1:14

    Article  PubMed Central  Google Scholar 

  44. Péry ARR, Brochot C, Zeman FA, Mombelli E, Desmots S, Pavan M et al (2013) Prediction of dose-hepatotoxic response in humans based on toxicokinetic/toxicodynamic modeling with or without in vivo data: a case study with acetaminophen. Toxicol Lett Elsevier Ireland Ltd. 220:26–34

  45. Peters SA (2012) Physiologically-based pharmacokinetic (PBPK) modeling and simulations. Wiley, USA

    Google Scholar 

  46. Prescott LF (1980) Kinetics and metabolism of paracetamol and phenacetin. Br J Clin Pharmacol 10(Suppl 2):291S–298S

    Article  PubMed  PubMed Central  Google Scholar 

  47. Prescott LF, Speirs GC, Critchley JA, Temple RM, Winney RJ (1989) Paracetamol disposition and metabolite kinetics in patients with chronic renal failure. Eur J Clin Pharmacol 36:291–297

    CAS  Article  PubMed  Google Scholar 

  48. Rawlins MD, Henderson DB, Hijab AR (1977) Pharmacokinetics of paracetamol (acetaminophen) after intravenous and oral administration. Eur J Clin Pharmacol 11:283–286

    CAS  Article  PubMed  Google Scholar 

  49. Reisfeld B, Mayeno AN, Lyons MA, Yang RSH (2007) Computational toxicology. In: Ekins S (ed) Wiley, USA, pp. 33–69

  50. Riches Z, Bloomer J, Patel a, Nolan a, Coughtrie M (2009) Assessment of cryopreserved human hepatocytes as a model system to investigate sulfation and glucuronidation and to evaluate inhibitors of drug conjugation. Xenobiotica 39:374–381

    CAS  Article  PubMed  Google Scholar 

  51. Rodgers T, Rowland M (2006) Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci 95:1238–1257

    CAS  Article  PubMed  Google Scholar 

  52. Rumack BH (2002) Acetaminophen hepatotoxicity: the first 35 years. J Toxicol Clin Toxicol 40:3–20

    CAS  Article  PubMed  Google Scholar 

  53. Sahajwalla CG, Ayres JW (1991) Multiple-dose acetaminophen pharmacokinetics. J Pharm Sci 80:855–860

    CAS  Article  PubMed  Google Scholar 

  54. Shinoda S, Aoyama T, Aoyama Y, Tomioka S, Matsumoto Y, Ohe Y (2007) Pharmacokinetics/pharmacodynamics of acetaminophen analgesia in Japanese patients with chronic pain. Biol Pharm Bull 30:157–161

    CAS  Article  PubMed  Google Scholar 

  55. Souliman S, Blanquet S, Beyssac E, Cardot J-M (2006) A level A in vitro/in vivo correlation in fasted and fed states using different methods: applied to solid immediate release oral dosage form. Eur J Pharm Sci 27:72–79

    CAS  Article  PubMed  Google Scholar 

  56. Srinivasan RS, Bourne DW, Putcha L (1994) Application of physiologically based pharmacokinetic models for assessing drug disposition in space. J Clin Pharmacol 34:692–698

    CAS  Article  PubMed  Google Scholar 

  57. Tan Q, Zhu R, Li H, Wang F, Yan M, Dai L (2012) Simultaneous quantitative determination of paracetamol and its glucuronide conjugate in human plasma and urine by liquid chromatography coupled to electrospray tandem mass spectrometry: application to a clinical pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci Elsevier BV 893–894:162–7

  58. Tone Y, Kawamata K, Murakami T, Higashi Y, Yata N (1990) Dose-dependent pharmacokinetics and first-pass metabolism of acetaminophen in rats. J Pharmacobiodyn 13:327–335

    CAS  Article  PubMed  Google Scholar 

  59. Tonoli D, Varesio E, Hopfgartner G (2012) Quantification of acetaminophen and two of its metabolites in human plasma by ultra-high performance liquid chromatography–low and high resolution tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci Elsevier BV 904:42–50

  60. Vajjah P, Isbister GK, Duffull SB (2012) Introduction to pharmacokinetics in clinical toxicology. Methods Mol Biol 929:289–312

    CAS  Article  PubMed  Google Scholar 

  61. Van der Walt S, Colbert SC, Varoquaux G (2011) The NumPy array: a structure for efficient numerical computation. Comput Sci Eng 13:22–30

    Article  Google Scholar 

  62. Volak LP, Hanley MJ, Masse G, Hazarika S, Harmatz JS, Badmaev V et al (2013) Effect of a herbal extract containing curcumin and piperine on midazolam, flurbiprofen and paracetamol (acetaminophen) pharmacokinetics in healthy volunteers. Br J Clin Pharmacol 75:450–462

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y et al (2013) HMDB 3.0—The Human Metabolome Database in 2013. Nucleic Acids Res 41:D801–D807

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Bormann I. DigitizeIt. Available at http://www.digitizeit.de. Accessed 15 Nov 2013

  65. Python Software Foundation. Python Language Reference, version 2.7. Available at http://www.python.org.  Accessed 10 Nov 2013

  66. Yin OQ, Tomlinson B, Chow AH, Chow MS (2001) Pharmacokinetics of acetaminophen in Hong Kong Chinese subjects. Int J Pharm 222:305–308

    CAS  Article  PubMed  Google Scholar 

  67. Zhu T, Ding L, Guo X, Yang L, Wen A (2007) Simultaneous determination of tramadol and acetaminophen in human plasma by LC–ESI–MS. Chromatographia 66:171–178

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the staff at the Franklin A. Graybill Statistical Laboratory at Colorado State University for their advice and consultation on several issues related to statistical analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Brad Reisfeld.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zurlinden, T.J., Reisfeld, B. Physiologically based modeling of the pharmacokinetics of acetaminophen and its major metabolites in humans using a Bayesian population approach. Eur J Drug Metab Pharmacokinet 41, 267–280 (2016). https://doi.org/10.1007/s13318-015-0253-x

Download citation

Keywords

  • Acetaminophen
  • APAP
  • PBPK
  • Physiologically based pharmacokinetic modeling
  • Bayesian population