Autoimmunity Highlights

, Volume 3, Issue 3, pp 105–112

Predicting and preventing autoimmunity: the case of anti-mitochondrial antibodies

  • Malgorzata Milkiewicz
  • Llorenç Caballería
  • Daniel S. Smyk
  • Piotr Milkiewicz
Review Article

Abstract

To be able to predict who will develop autoimmune disease would allow for early treatment which may dramatically alter the course of the disease. In some cases, it may also lead to prevention of the disease development. The prediction of disease development is based on the analysis of risk factors which have been associated with the disease in question. These factors include genetic susceptibility, as well as immunological and environmental factors. One autoimmune disease that may serve as a model for disease prediction is primary biliary cirrhosis (PBC), an autoimmune liver disease affecting the small- and medium-sized bile ducts. PBC could be an ideal model due to recent advances in elucidating its genetic associations. As well, a variety of immunological and environmental risk factors have been well established. Indeed, the presence of PBC-specific antimitochondrial antibodies and/or antinuclear antibodies has been shown to be predictor of disease development and possibly prognosis. This review will examine the current evidence which suggests that we may potentially be able to predict the development of PBC in some individuals. These concepts may also be applied to autoimmune diseases in general.

Keywords

Autoimmunity Autoimmune disease Genetics Prevention Prediction Risk factor Susceptibility 

Abbreviations

AMA

Antimitochondrial antibodies

ANA

Antinuclear antibodies

E. coli

Escherichia coli

L. delbrueckii

Lactobacillus delbrueckii

PBC

Primary biliary cirrhosis

PDC-E2

Pyruvate dehydrogenase complex

UTI

Urinary tract infection

References

  1. 1.
    Kaplan MM, Gershwin ME (2005) Primary biliary cirrhosis. N Engl J Med 353:1261–1273PubMedGoogle Scholar
  2. 2.
    Neuberger J (1997) Primary biliary cirrhosis. Lancet 350:875–879PubMedGoogle Scholar
  3. 3.
    Hemminki K, Li X, Sundquist K et al (2009) Shared familial aggregation of susceptibility to autoimmune diseases. Arthritis Rheum 60:2845–2847PubMedGoogle Scholar
  4. 4.
    Kumagi T, Heathcote EJ (2008) Primary biliary cirrhosis. Orphanet J Rare Dis 3:1PubMedPubMedCentralGoogle Scholar
  5. 5.
    Lindor KD, Gershwin ME, Poupon R et al (2009) Primary biliary cirrhosis. Hepatology 50:291–308PubMedGoogle Scholar
  6. 6.
    Poupon R (2010) Primary biliary cirrhosis: a 2010 update. J Hepatol 52:745–758PubMedGoogle Scholar
  7. 7.
    Bogdanos DP, Baum H, Vergani D (2003) Antimitochondrial and other autoantibodies. Clin Liver Dis 7:759–777, viGoogle Scholar
  8. 8.
    Bogdanos DP, Invernizzi P, Mackay IR et al (2008) Autoimmune liver serology: current diagnostic and clinical challenges. World J Gastroenterol 14:3374–3387PubMedPubMedCentralGoogle Scholar
  9. 9.
    Mackay IR (1958) Primary biliary cirrhosis showing a high titer of autoantibody; report of a case. N Engl J Med 258:185–188PubMedGoogle Scholar
  10. 10.
    Vleggaar FP, van Buuren HR, Zondervan PE et al (2001) Jaundice in non-cirrhotic primary biliary cirrhosis: the premature ductopenic variant. Gut 49:276–281PubMedPubMedCentralGoogle Scholar
  11. 11.
    Hohenester S, Oude-Elferink RP, Beuers U (2009) Primary biliary cirrhosis. Semin Immunopathol 31:283–307PubMedPubMedCentralGoogle Scholar
  12. 12.
    Corpechot C, Chretien Y, Chazouilleres O et al (2010) Demographic, lifestyle, medical and familial factors associated with primary biliary cirrhosis. J Hepatol 53:162–169PubMedGoogle Scholar
  13. 13.
    Gershwin ME, Selmi C, Worman HJ et al (2005) Risk factors and comorbidities in primary biliary cirrhosis: a controlled interview-based study of 1032 patients. Hepatology 42:1194–1202PubMedPubMedCentralGoogle Scholar
  14. 14.
    Parikh-Patel A, Gold EB, Worman H et al (2001) Risk factors for primary biliary cirrhosis in a cohort of patients from the united states. Hepatology 33:16–21PubMedGoogle Scholar
  15. 15.
    Prince MI, Ducker SJ, James OF (2010) Case-control studies of risk factors for primary biliary cirrhosis in two United Kingdom populations. Gut 59:508–512PubMedGoogle Scholar
  16. 16.
    Rigopoulou EI, Bogdanos DP, Liaskos C et al (2007) Anti-mitochondrial antibody immunofluorescent titres correlate with the number and intensity of immunoblot-detected mitochondrial bands in patients with primary biliary cirrhosis. Clin Chim Acta 380:118–121PubMedGoogle Scholar
  17. 17.
    Vergani D, Bogdanos DP (2003) Positive markers in AMA-negative PBC. Am J Gastroenterol 98:241–243PubMedGoogle Scholar
  18. 18.
    Walker JG, Doniach D, Roitt IM et al (1965) Serological tests in diagnosis of primary biliary cirrhosis. Lancet 1:827–831PubMedGoogle Scholar
  19. 19.
    Kisand KE, Metskula K, Kisand KV et al (2001) The follow-up of asymptomatic persons with antibodies to pyruvate dehydrogenase in adult population samples. J Gastroenterol 36:248–254PubMedGoogle Scholar
  20. 20.
    Mattalia A, Quaranta S, Leung PS et al (1998) Characterization of antimitochondrial antibodies in health adults. Hepatology 27:656–661PubMedGoogle Scholar
  21. 21.
    Tunbridge WM, Evered DC, Hall R et al (1977) The spectrum of thyroid disease in a community: the Whickham survey. Clin Endocrinol 7:481–493Google Scholar
  22. 22.
    Dahnrich C, Pares A, Caballeria L et al (2009) New ELISA for detecting primary biliary cirrhosis-specific antimitochondrial antibodies. Clin Chem 55:978–985PubMedGoogle Scholar
  23. 23.
    Mitchison HC, Bassendine MF, Hendrick A et al (1986) Positive antimitochondrial antibody but normal alkaline phosphatase: is this primary biliary cirrhosis? Hepatology 6:1279–1284PubMedGoogle Scholar
  24. 24.
    Leung PS, Coppel RL, Ansari A et al (1997) Antimitochondrial antibodies in primary biliary cirrhosis. Semin Liver Dis 17:61–69PubMedGoogle Scholar
  25. 25.
    Liu H, Norman GL, Shums Z et al (2010) PBC screen: an IgG/IgA dual isotype ELISA detecting multiple mitochondrial and nuclear autoantibodies specific for primary biliary cirrhosis. J Autoimmun 35:436–442PubMedGoogle Scholar
  26. 26.
    Van de Water J, Fregeau D, Davis P et al (1988) Autoantibodies of primary biliary cirrhosis recognize dihydrolipoamide acetyltransferase and inhibit enzyme function. J Immunol 141:2321–2324PubMedGoogle Scholar
  27. 27.
    Dubel L, Tanaka A, Leung PS et al (1999) Autoepitope mapping and reactivity of autoantibodies to the dihydrolipoamide dehydrogenase-binding protein (E3BP) and the glycine cleavage proteins in primary biliary cirrhosis. Hepatology 29:1013–1018PubMedGoogle Scholar
  28. 28.
    Palmer JM, Jones DE, Quinn J et al (1999) Characterization of the autoantibody responses to recombinant E3 binding protein (protein X) of pyruvate dehydrogenase in primary biliary cirrhosis. Hepatology 30:21–26PubMedGoogle Scholar
  29. 29.
    Bogdanos DP, Vergani D (2006) Origin of cross-reactive autoimmunity in primary biliary cirrhosis. Liver Int 26:633–635PubMedGoogle Scholar
  30. 30.
    Metcalf JV, Mitchison HC, Palmer JM et al (1996) Natural history of early primary biliary cirrhosis. Lancet 348:1399–1402PubMedGoogle Scholar
  31. 31.
    Bogdanos DP, Liaskos C, Pares A et al (2007) Anti-gp210 antibody mirrors disease severity in primary biliary cirrhosis. Hepatology 45:1583; author reply 1583–1584Google Scholar
  32. 32.
    Invernizzi P, Podda M, Battezzati PM et al (2001) Autoantibodies against nuclear pore complexes are associated with more active and severe liver disease in primary biliary cirrhosis. J Hepatol 34:366–372PubMedGoogle Scholar
  33. 33.
    Miyachi K, Hankins RW, Matsushima H et al (2003) Profile and clinical significance of anti-nuclear envelope antibodies found in patients with primary biliary cirrhosis: a multicenter study. J Autoimmun 20:247–254PubMedGoogle Scholar
  34. 34.
    Nakamura M, Kondo H, Mori T et al (2007) Anti-gp210 and anti-centromere antibodies are different risk factors for the progression of primary biliary cirrhosis. Hepatology 45:118–127PubMedGoogle Scholar
  35. 35.
    Rigopoulou EI, Davies ET, Pares A et al (2005) Prevalence and clinical significance of isotype specific antinuclear antibodies in primary biliary cirrhosis. Gut 54:528–532PubMedPubMedCentralGoogle Scholar
  36. 36.
    Itoh S, Ichida T, Yoshida T et al (1998) Autoantibodies against a 210 kDa glycoprotein of the nuclear pore complex as a prognostic marker in patients with primary biliary cirrhosis. J Gastroenterol Hepatol 13:257–265PubMedGoogle Scholar
  37. 37.
    Lassoued K, Guilly MN, Andre C et al (1988) Autoantibodies to 200 kD polypeptide(s) of the nuclear envelope: a new serologic marker of primary biliary cirrhosis. Clin Exp Immunol 74:283–288PubMedPubMedCentralGoogle Scholar
  38. 38.
    Muratori P, Muratori L, Ferrari R et al (2003) Characterization and clinical impact of antinuclear antibodies in primary biliary cirrhosis. Am J Gastroenterol 98:431–437PubMedGoogle Scholar
  39. 39.
    Wesierska-Gadek J, Penner E, Battezzati PM et al (2006) Correlation of initial autoantibody profile and clinical outcome in primary biliary cirrhosis. Hepatology 43:1135–1144PubMedGoogle Scholar
  40. 40.
    Yang WH, Yu JH, Nakajima A et al (2004) Do antinuclear antibodies in primary biliary cirrhosis patients identify increased risk for liver failure? Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc 2:1116–1122Google Scholar
  41. 41.
    Rigopoulou EI, Davies ET, Bogdanos DP et al (2007) Antimitochondrial antibodies of immunoglobulin G3 subclass are associated with a more severe disease course in primary biliary cirrhosis. Liver Int 27:1226–1231PubMedGoogle Scholar
  42. 42.
    Courvalin JC, Worman HJ (1997) Nuclear envelope protein autoantibodies in primary biliary cirrhosis. Semin Liver Dis 17:79–90PubMedGoogle Scholar
  43. 43.
    Lozano F, Pares A, Borche L et al (1988) Autoantibodies against nuclear envelope-associated proteins in primary biliary cirrhosis. Hepatology 8:930–938PubMedGoogle Scholar
  44. 44.
    Bogdanos DP, Liaskos C, Rigopoulou EI et al (2006) Anti-mitochondrial antibodies in patients with systemic lupus erythematosus: revealing the unforeseen. Clin Chim Acta 373:183–184; author reply 185Google Scholar
  45. 45.
    Bogdanos DP, Pares A, Rodes J et al (2004) Primary biliary cirrhosis specific antinuclear antibodies in patients from Spain. Am J Gastroenterol 99:763–764; author reply 765Google Scholar
  46. 46.
    Gershwin ME, Mackay IR (2008) The causes of primary biliary cirrhosis: convenient and inconvenient truths. Hepatology 47:737–745PubMedGoogle Scholar
  47. 47.
    Lleo A, Selmi C, Invernizzi P et al (2009) Apotopes and the biliary specificity of primary biliary cirrhosis. Hepatology 49:871–879PubMedPubMedCentralGoogle Scholar
  48. 48.
    Selmi C, Gershwin ME (2010) Autoantibodies in autoimmune liver disease: biomarkers versus epiphenomena. Gut 59:712–713PubMedGoogle Scholar
  49. 49.
    Vergani D, Bogdanos DP, Baum H (2004) Unusual suspects in primary biliary cirrhosis. Hepatology 39:38–41PubMedGoogle Scholar
  50. 50.
    Baum H, Bogdanos DP, Vergani D (2001) Antibodies to Clp protease in primary biliary cirrhosis: possible role of a mimicking T-cell epitope. J Hepatol 34:785–787PubMedGoogle Scholar
  51. 51.
    Bogdanos DP, Baum H, Grasso A et al (2004) Microbial mimics are major targets of crossreactivity with human pyruvate dehydrogenase in primary biliary cirrhosis. J Hepatol 40:31–39PubMedGoogle Scholar
  52. 52.
    Bogdanos DP, Baum H, Gunsar F et al (2004) Extensive homology between the major immunodominant mitochondrial antigen in primary biliary cirrhosis and Helicobacter pylori does not lead to immunological cross-reactivity. Scand J Gastroenterol 39:981–987PubMedGoogle Scholar
  53. 53.
    Bogdanos DP, Baum H, Sharma UC et al (2002) Antibodies against homologous microbial caseinolytic proteases P characterise primary biliary cirrhosis. J Hepatol 36:14–21PubMedGoogle Scholar
  54. 54.
    Bogdanos DP, Koutsoumpas A, Baum H et al (2006) Borrelia Burgdorferi: a new self-mimicking trigger in primary biliary cirrhosis. Dig Liver Dis 38:781–782; author reply 782–783Google Scholar
  55. 55.
    Bogdanos DP, McFarlane IG (2003) Cytochrome P450 2A6 meets P450 2D6: an enigma of viral infections and autoimmunity. J Hepatol 39:860–863PubMedGoogle Scholar
  56. 56.
    Bogdanos DP, Mieli-Vergani G, Vergani D (2000) Virus, liver and autoimmunity. Dig Liver Dis 32:440–446PubMedGoogle Scholar
  57. 57.
    Bogdanos DP, Muratori L, Bianchi FB et al (2000) Hepatitis C virus and autoimmunity. Hepatology 31:1380PubMedGoogle Scholar
  58. 58.
    Bogdanos DP, Pares A, Baum H et al (2004) Disease-specific cross-reactivity between mimicking peptides of heat shock protein of Mycobacterium gordonae and dominant epitope of E2 subunit of pyruvate dehydrogenase is common in Spanish but not British patients with primary biliary cirrhosis. J Autoimmun 22:353–362PubMedGoogle Scholar
  59. 59.
    Bogdanos DP, Vergani D (2009) Bacteria and primary biliary cirrhosis. Clin Rev Allergy Immunol 36:30–39PubMedGoogle Scholar
  60. 60.
    Granito A, Stanzani M, Muratori L et al (2008) LKM1-positive type 2 autoimmune hepatitis following allogenic hematopoietic stem-cell transplantation. Am J Gastroenterol 103:1313–1314PubMedGoogle Scholar
  61. 61.
    Gregorio GV, Choudhuri K, Ma Y et al (2003) Mimicry between the hepatitis C virus polyprotein and antigenic targets of nuclear and smooth muscle antibodies in chronic hepatitis C virus infection. Clin Exp Immunol 133:404–413PubMedPubMedCentralGoogle Scholar
  62. 62.
    Invernizzi P, Miozzo M, Selmi C et al (2005) X chromosome monosomy: a common mechanism for autoimmune diseases. J Immunol 175:575–578PubMedGoogle Scholar
  63. 63.
    Kerkar N, Choudhuri K, Ma Y et al (2003) Cytochrome P4502D6(193–212): a new immunodominant epitope and target of virus/self cross-reactivity in liver kidney microsomal autoantibody type 1-positive liver disease. J Immunol 170:1481–1489PubMedGoogle Scholar
  64. 64.
    Lleo A, Selmi C, Invernizzi P et al (2008) The consequences of apoptosis in autoimmunity. J Autoimmun 31:257–262PubMedPubMedCentralGoogle Scholar
  65. 65.
    Longhi MS, Hussain MJ, Bogdanos DP et al (2007) Cytochrome P450IID6-specific CD8 T cell immune responses mirror disease activity in autoimmune hepatitis type 2. Hepatology 46:472–484PubMedGoogle Scholar
  66. 66.
    Longhi MS, Ma Y, Bogdanos DP et al (2004) Impairment of CD4(+)CD25(+) regulatory T-cells in autoimmune liver disease. J Hepatol 41:31–37PubMedGoogle Scholar
  67. 67.
    Longhi MS, Ma Y, Mitry RR et al (2005) Effect of CD4+ CD25+ regulatory T-cells on CD8 T-cell function in patients with autoimmune hepatitis. J Autoimmun 25:63–71PubMedGoogle Scholar
  68. 68.
    Ma Y, Thomas MG, Okamoto M et al (2002) Key residues of a major cytochrome P4502D6 epitope are located on the surface of the molecule. J Immunol 169:277–285PubMedGoogle Scholar
  69. 69.
    Muratori L, Bogdanos DP, Muratori P et al (2005) Susceptibility to thyroid disorders in hepatitis C. Clin Gastroenterol Hepatol 3:595–603PubMedGoogle Scholar
  70. 70.
    Vergani D, Choudhuri K, Bogdanos DP et al (2002) Pathogenesis of autoimmune hepatitis. Clin Liver Dis 6:727–737PubMedGoogle Scholar
  71. 71.
    Vergani D, Longhi MS, Bogdanos DP et al (2009) Autoimmune hepatitis. Semin Immunopathol 31:421–435PubMedGoogle Scholar
  72. 72.
    Wen L, Ma Y, Bogdanos DP et al (2001) Pediatric autoimmune liver diseases: the molecular basis of humoral and cellular immunity. Curr Mol Med 1:379–389PubMedGoogle Scholar
  73. 73.
    Abdulkarim AS, Petrovic LM, Kim WR et al (2004) Primary biliary cirrhosis: an infectious disease caused by Chlamydia pneumoniae? J Hepatol 40:380–384PubMedGoogle Scholar
  74. 74.
    Alvaro D, Invernizzi P, Onori P et al (2004) Estrogen receptors in cholangiocytes and the progression of primary biliary cirrhosis. J Hepatol 41:905–912PubMedGoogle Scholar
  75. 75.
    Amano K, Leung PS, Rieger R et al (2005) Chemical xenobiotics and mitochondrial autoantigens in primary biliary cirrhosis: identification of antibodies against a common environmental, cosmetic, and food additive, 2-octynoic acid. J Immunol 174:5874–5883PubMedGoogle Scholar
  76. 76.
    Amano K, Leung PS, Xu Q et al (2004) Xenobiotic-induced loss of tolerance in rabbits to the mitochondrial autoantigen of primary biliary cirrhosis is reversible. J Immunol 172:6444–6452PubMedGoogle Scholar
  77. 77.
    Hirschfield GM, Heathcote EJ, Gershwin ME (2010) Pathogenesis of cholestatic liver disease and therapeutic approaches. Gastroenterology 139:1481–1496PubMedGoogle Scholar
  78. 78.
    Jones DE (2007) Pathogenesis of primary biliary cirrhosis. Gut 56:1615–1624PubMedPubMedCentralGoogle Scholar
  79. 79.
    Jones DE, Donaldson PT (2003) Genetic factors in the pathogenesis of primary biliary cirrhosis. Clin Liver Dis 7:841–864PubMedGoogle Scholar
  80. 80.
    Mackay IR, Whittingham S, Fida S et al (2000) The peculiar autoimmunity of primary biliary cirrhosis. Immunol Rev 174:226–237PubMedGoogle Scholar
  81. 81.
    Mason A, Xu L, Shen Z et al (2004) Patients with primary biliary cirrhosis make anti-viral and anti-mitochondrial antibodies to mouse mammary tumor virus. Gastroenterology 127:1863–1864; author reply 1864–1865Google Scholar
  82. 82.
    McNally RJ, Ducker S, James OF (2009) Are transient environmental agents involved in the cause of primary biliary cirrhosis? Evidence from space-time clustering analysis. Hepatology 50:1169–1174PubMedGoogle Scholar
  83. 83.
    Shimoda S, Nakamura M, Ishibashi H et al (1995) HLA DRB4 0101-restricted immunodominant T cell autoepitope of pyruvate dehydrogenase complex in primary biliary cirrhosis: evidence of molecular mimicry in human autoimmune diseases. J Exp Med 181:1835–1845PubMedGoogle Scholar
  84. 84.
    Leung PS, Park O, Matsumura S et al (2003) Is there a relation between Chlamydia infection and primary biliary cirrhosis? Clin Dev Immunol 10:227–233PubMedPubMedCentralGoogle Scholar
  85. 85.
    Xu L, Shen Z, Guo L et al (2003) Does a betaretrovirus infection trigger primary biliary cirrhosis? Proc Nat Acad Sci USA 100:8454–8459PubMedPubMedCentralGoogle Scholar
  86. 86.
    Oertelt S, Lian ZX, Cheng CM et al (2006) Anti-mitochondrial antibodies and primary biliary cirrhosis in TGF-beta receptor II dominant-negative mice. J Immunol 177:1655–1660PubMedGoogle Scholar
  87. 87.
    Wakabayashi K, Lian ZX, Moritoki Y et al (2006) IL-2 receptor alpha(−/−) mice and the development of primary biliary cirrhosis. Hepatology 44:1240–1249PubMedGoogle Scholar
  88. 88.
    Yang GX, Lian ZX, Chuang YH et al (2008) Adoptive transfer of CD8(+) T cells from transforming growth factor beta receptor type II (dominant negative form) induces autoimmune cholangitis in mice. Hepatology 47:1974–1982PubMedPubMedCentralGoogle Scholar
  89. 89.
    Zhang W, Sharma R, Ju ST et al (2009) Deficiency in regulatory T cells results in development of antimitochondrial antibodies and autoimmune cholangitis. Hepatology 49:545–552PubMedPubMedCentralGoogle Scholar
  90. 90.
    Lazaridis KN, Juran BD, Boe GM et al (2007) Increased prevalence of antimitochondrial antibodies in first-degree relatives of patients with primary biliary cirrhosis. Hepatology 46:785–792PubMedGoogle Scholar
  91. 91.
    Bogdanos DP, Dalekos GN (2008) Enzymes as target antigens of liver-specific autoimmunity: the case of cytochromes P450s. Curr Med Chem 15:2285–2292PubMedGoogle Scholar
  92. 92.
    Smyk D, Cholongitas E, Kriese S et al (2011) Primary biliary cirrhosis: family stories. Autoimmune Dis 2011:189585PubMedPubMedCentralGoogle Scholar
  93. 93.
    Smyk D, Rigopoulou EI, Baum H et al (2012) Autoimmunity and environment: am I at risk? Clin Rev Allergy Immunol 42:199–212Google Scholar
  94. 94.
    Smyk DS, Bogdanos DP, Kriese S et al (2012) Urinary tract infection as a risk factor for autoimmune liver disease: from bench to bedside. Clin Res Hepatol Gastroenterol 36(2):110–121Google Scholar
  95. 95.
    Smyk DS, Rigopoulou EI, Lleo A et al (2011) Immunopathogenesis of primary biliary cirrhosis: an old wives’ tale. Immun Ageing I&A 8:12Google Scholar
  96. 96.
    Brind AM, Bray GP, Portmann BC et al (1995) Prevalence and pattern of familial disease in primary biliary cirrhosis. Gut 36:615–617PubMedPubMedCentralGoogle Scholar
  97. 97.
    Floreani A, Naccarato R, Chiaramonte M (1997) Prevalence of familial disease in primary biliary cirrhosis in Italy. J Hepatol 26:737–738PubMedGoogle Scholar
  98. 98.
    Jaup BH, Zettergren LS (1980) Familial occurrence of primary biliary cirrhosis associated with hypergammaglobulinemia in descendants: a family study. Gastroenterology 78:549–555PubMedGoogle Scholar
  99. 99.
    Jones DE, Watt FE, Metcalf JV et al (1999) Familial primary biliary cirrhosis reassessed: a geographically-based population study. J Hepatol 30:402–407PubMedGoogle Scholar
  100. 100.
    Tsuji K, Watanabe Y, Van De Water J et al (1999) Familial primary biliary cirrhosis in Hiroshima. J Autoimmun 13:171–178PubMedGoogle Scholar
  101. 101.
    Bogdanos DP, Smyk DS, Rigopoulou EI et al (2012) Twin studies in autoimmune disease: genetics, gender and environment. J Autoimmun 38:J156–J169Google Scholar
  102. 102.
    Invernizzi P, Miozzo M, Battezzati PM et al (2004) Frequency of monosomy X in women with primary biliary cirrhosis. Lancet 363:533–535PubMedGoogle Scholar
  103. 103.
    Selmi C, Invernizzi P, Zuin M et al (2005) Genes and (auto)immunity in primary biliary cirrhosis. Genes Immun 6:543–556PubMedGoogle Scholar
  104. 104.
    Selmi C, Invernizzi P, Miozzo M et al (2004) Primary biliary cirrhosis: does X mark the spot? Autoimmun Rev 3:493–499PubMedGoogle Scholar
  105. 105.
    Milkiewicz P, Heathcote J (2004) Can Turner syndrome teach us about the pathogenesis of chronic cholestasis? Hepatology 40:1226–1228PubMedGoogle Scholar
  106. 106.
    Milkiewicz P, Heathcote J (2005) Primary biliary cirrhosis in a patient with Turner syndrome. Can J Gastroenterol 19:631–633PubMedGoogle Scholar
  107. 107.
    Selmi C, Mayo MJ, Bach N et al (2004) Primary biliary cirrhosis in monozygotic and dizygotic twins: genetics, epigenetics, and environment. Gastroenterology 127:485–492PubMedGoogle Scholar
  108. 108.
    Hirschfield GM, Invernizzi P (2011) Progress in the genetics of primary biliary cirrhosis. Semin Liver Dis 31:147–156PubMedGoogle Scholar
  109. 109.
    Hirschfield GM, Liu X, Xu C et al (2009) Primary biliary cirrhosis associated with HLA, IL12A, and IL12RB2 variants. N Engl J Med 360:2544–2555PubMedPubMedCentralGoogle Scholar
  110. 110.
    Hirschfield GM, Liu X, Han Y et al (2010) Variants at IRF5-TNPO3, 17q12-21 and MMEL1 are associated with primary biliary cirrhosis. Nat Genet 42:655–657PubMedPubMedCentralGoogle Scholar
  111. 111.
    Tanaka A, Invernizzi P, Ohira H et al (2011) Replicated association of 17q12-21 with susceptibility of primary biliary cirrhosis in a Japanese cohort. Tissue Antigens 78:65–68Google Scholar
  112. 112.
    Liu X, Invernizzi P, Lu Y et al (2010) Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis. Nat Genet 42:658–660PubMedPubMedCentralGoogle Scholar
  113. 113.
    Mells GF, Floyd JA, Morley KI et al (2011) Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis. Nat Genet 43:329–332PubMedPubMedCentralGoogle Scholar
  114. 114.
    Bogdanos DP, Smyk DS, Rigopoulou EI et al (2012) Smoking as a risk factor for autoimmune liver disease: what we can learn from primary biliary cirrhosis. Ann Hepatol Off J Mex Assoc Hepatol 11:7–14Google Scholar
  115. 115.
    Burroughs AK, Rosenstein IJ, Epstein O et al (1984) Bacteriuria and primary biliary cirrhosis. Gut 25:133–137PubMedPubMedCentralGoogle Scholar
  116. 116.
    Bogdanos DP, Choudhuri K, Vergani D (2001) Molecular mimicry and autoimmune liver disease: virtuous intentions, malign consequences. Liver 21:225–232PubMedGoogle Scholar
  117. 117.
    Burroughs AK, Butler P, Sternberg MJ et al (1992) Molecular mimicry in liver disease. Nature 358:377–378PubMedGoogle Scholar
  118. 118.
    Van de Water J, Ishibashi H, Coppel RL et al (2001) Molecular mimicry and primary biliary cirrhosis: premises not promises. Hepatology 33:771–775PubMedGoogle Scholar
  119. 119.
    Shimoda S, Nakamura M, Shigematsu H et al (2000) Mimicry peptides of human PDC-E2 163–176 peptide, the immunodominant T-cell epitope of primary biliary cirrhosis. Hepatology 31:1212–1216PubMedGoogle Scholar
  120. 120.
    Gregorio GV, Choudhuri K, Ma Y et al (1999) Mimicry between the hepatitis B virus DNA polymerase and the antigenic targets of nuclear and smooth muscle antibodies in chronic hepatitis B virus infection. J Immunol 162:1802–1810PubMedGoogle Scholar
  121. 121.
    Bogdanos DP, McFarlane IG (2003) Cytochrome P450 2A6 meets P450 2D6: an enigma of viral infections and autoimmunity. J Hepatol 39:860–863PubMedGoogle Scholar
  122. 122.
    Bogdanos DP, Lenzi M, Okamoto M et al (2004) Multiple viral/self immunological cross-reactivity in liver kidney microsomal antibody positive hepatitis C virus infected patients is associated with the possession of HLA B51. Int J Immunopathol Pharmacol 17:83–92PubMedGoogle Scholar
  123. 123.
    Smyk D, Mytilinaiou MG, Rigopoulou EI et al (2010) PBC triggers in water reservoirs, coal mining areas and waste disposal sites: from Newcastle to New York. Dis Markers 29:337–344PubMedPubMedCentralGoogle Scholar
  124. 124.
    Butler P, Hamilton-Miller J, Baum H et al (1995) Detection of M2 antibodies in patients with recurrent urinary tract infection using an ELISA and purified PBC specific antigens. Evidence for a molecular mimicry mechanism in the pathogenesis of primary biliary cirrhosis? Biochem Mol Biol Int 35:473–485PubMedGoogle Scholar
  125. 125.
    Baum H, Bogdanos DP, Vergani D (2001) Antibodies to Clp protease in primary biliary cirrhosis: possible role of a mimicking T-cell epitope. J Hepatol 34:785–787PubMedGoogle Scholar
  126. 126.
    Mayo I, Arizti P, Pares A et al (2000) Antibodies against the COOH-terminal region of E. coli ClpP protease in patients with primary biliary cirrhosis. J Hepatol 33:528–536PubMedGoogle Scholar
  127. 127.
    Bogdanos DP, Baum H, Vergani D et al (2010) The role of E. coli infection in the pathogenesis of primary biliary cirrhosis. Dis Markers 29:301–311PubMedPubMedCentralGoogle Scholar
  128. 128.
    Bogdanos DP, Baum H, Grasso A et al (2004) Microbial mimics are major targets of crossreactivity with human pyruvate dehydrogenase in primary biliary cirrhosis. J Hepatol 40:31–39PubMedGoogle Scholar
  129. 129.
    Shimoda S, Van de Water J, Ansari A et al (1998) Identification and precursor frequency analysis of a common T cell epitope motif in mitochondrial autoantigens in primary biliary cirrhosis. J Clin Invest 102:1831–1840PubMedPubMedCentralGoogle Scholar
  130. 130.
    Bogdanos DP, Baum H, Okamoto M et al (2005) Primary biliary cirrhosis is characterized by IgG3 antibodies cross-reactive with the major mitochondrial autoepitope and its Lactobacillus mimic. Hepatology 42:458–465PubMedGoogle Scholar
  131. 131.
    Bogdanos D, Pusl T, Rust C et al (2008) Primary biliary cirrhosis following Lactobacillus vaccination for recurrent vaginitis. J Hepatol 49:466–473PubMedGoogle Scholar
  132. 132.
    Bernier M, Njomnang Soh P, Lochet A et al (2012) Lactobacillus delbrueckii: Probable agent of urinary tract infections in very old women. Pathol Biol (Paris) 60(2):140–142Google Scholar
  133. 133.
    Darbro BW, Petroelje BK, Doern GV (2009) Lactobacillus delbrueckii as the cause of urinary tract infection. J Clin Microbiol 47:275–277PubMedPubMedCentralGoogle Scholar
  134. 134.
    Varyani FK, West J, Card TR (2011) An increased risk of urinary tract infection precedes development of primary biliary cirrhosis. BMC Gastroenterol 11:95PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Malgorzata Milkiewicz
    • 1
  • Llorenç Caballería
    • 2
  • Daniel S. Smyk
    • 3
  • Piotr Milkiewicz
    • 4
  1. 1.Medical Biology LaboratoryPomeranian Medical UniversitySzczecinPoland
  2. 2.Liver Unit, Hospital Clínic University of BarcelonaBarcelonaSpain
  3. 3.Institute of Liver StudiesKing’s College London School of MedicineLondonUK
  4. 4.Liver Unit, Pomeranian Medical UniversitySzczecinPoland

Personalised recommendations