Skip to main content
Log in

Eucalyptus rust climatic risk as affected by topography and ENSO phenomenon

  • Original Paper
  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

Brazil is among the most important Eucalyptus producers in the world, contributing with approximately 25% of the world′s Eucalyptus plantations area. Even under favorable climatic conditions, the Eucalyptus yields in Brazil are often limited by several factors, including fungal diseases. Among others, Eucalyptus rust, caused by Puccinia psidii, is the one of the most severe fungal diseases and can cause extensive losses in wood production. Considering the significant influence of climatic conditions on Eucalyptus rust, this study aimed to analyze the effect of climatic variability, El Niño Southern Oscillation phenomenon (ENSO), and topo-climatic conditions on the favorability zones for Eucalyptus rust in south-central Brazil. The assessment of the climatic favorability for Eucalyptus rust was carried out for the main Eucalyptus producing regions in Brazil. For that, information related to climate, seasonal and inter-annual climatic variability, and disease response to topography effect were considered. The ENSO phenomenon affects the favorable climatic zones for Eucalyptus rust occurrence in a different way for the studied regions. For SC and PR states higher rust occurrence was observed in El Niño years and reduced in La Niña years while for the other states no trend was observed. The effect of topoclimatic conditions established in this study indicated its influence on the areas of climatic favorability for Eucalyptus rust occurrence. The results indicated that within favorable areas to the disease, it is possible to identify areas of low risk (escape areas) depending on the face of the terrain. This finding highlights the importance to consider the topo-climatic effect and ENSO phenomenon on plant disease monitoring and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alfenas AC, Zauza EAV, Mafia RG, Assis TF (2009) Clonagem e doenças do eucalipto. Viçosa: Editora UFV (2nd ed.), pp 500

  • Alvares CA, Stape JL, Sentelhas PC, Moraes G, Leonardo J, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  • Alvares CA, Mattos EM, Sentelhas PC, Miranda AC, Stape JL (2015) Modeling temporal and spatial variability of leaf wetness duration in Brazil. Theor Appl Climatol 120:455–467. https://doi.org/10.1007/s00704-014-1182-3

    Article  Google Scholar 

  • Alvares CA, Sentelhas PC, Mattos EM, Miranda AC, Moraes WB, Silva PHM, Stape JL (2017) Climatic favourability zones for Eucalyptus rust in Brazil. Forest Pathol 47:1–17. https://doi.org/10.1111/efp.12301

    Article  Google Scholar 

  • Barros V, Gonzalez M, Liebmann B, Camilloni I (2000) Influence of the South Atlantic convergence zone and South Atlantic Sea surface temperatures on interannual summer rainfall variability in southeastern South America. Theor Appl Climatol 67:123–133. https://doi.org/10.1007/s007040070002

    Article  Google Scholar 

  • Booth TH, Jovanovic T (2012) Assessing vulnerable areas for Puccinia psidii Eucalyptus rust in Australia. Aust Plant Path 41:425–429. https://doi.org/10.1007/s13313-012-0130-x

    Article  Google Scholar 

  • Brooker MIH (2000) A new classification of the genus Eucalyptus L’Hér. (Myrtaceae). Aust Syst Bot 13:79–148. https://doi.org/10.1071/SB98008

    Article  Google Scholar 

  • Coutinho TA, Wingfield MJ, Alfenas AC, Crous PW (1998) Eucalyptus rust. A disease with the potential for serious international implications. Plant Dis 82:819–825. https://doi.org/10.1094/PDIS.1998.82.7.819

    Article  CAS  PubMed  Google Scholar 

  • Del Ponte EM, Maia AEM, Dos Santos TV, Martins EJ, Baethgen WE (2011) Early-season warning of soybean rust regional epidemics using El Niño southern oscillation information. Int J Biometeorol 55:575–583

    Article  PubMed  Google Scholar 

  • FAO (2018). FAOSTAT: FAO statistical databases. http://www.fao.org/faostat/es/#data/QC. Accessed 02 January 2018

  • Glen M, Alfenas AC, Zauza EAV, Wingfield MJ, Mohammed C (2007) Puccinia psidii. A threat to the Australian environment and economy – a review. Australas Plant Pathol 36(1):16. https://doi.org/10.1071/AP06088

    Article  Google Scholar 

  • Gonçalves DRC (2015) Avaliação do efeito da face de exposição solar sobre o crescimento de plantios comerciais de Eucalyptus sp na região sudoeste do estado de São Paulo. Doctoral dissertation, Universidade de São Paulo, p 91

    Google Scholar 

  • Gonçalves JLM, Alvares CA, Higa AR, Silva LD, Alfenas AC, Stahl J, Epron D (2013) Integrating genetic and silvicultural strategies to minimize abiotic and biotic constraints in Brazilian eucalypt plantations. Forest Ecol Manag 301:6–27. https://doi.org/10.1016/j.foreco.2012.12.030

    Article  Google Scholar 

  • Grattapaglia D, Kirst M (2008) Eucalyptus applied genomics: from gene sequences to breeding tools. New Phytol 179:911–929. https://doi.org/10.1111/j.1469-8137.2008.02503.x

    Article  PubMed  CAS  Google Scholar 

  • Grimm AM (2009) Clima da Região Sul do Brasil. In: Cavalcanti IFA, Ferreira NJ, Justi da Silva MGA, Silva Dias MAF (Ed.). Tempo e Clima no Brasil. São Paulo. Parte II - Climas do Brasil, pp 259–275

  • Holden ZA, Jolly WM (2011) Modeling topographic influences on fuel moisture and fire danger in complex terrain to improve wildland fire management decision support. Forest Ecol Manag 262:2133–2141. https://doi.org/10.1016/j.foreco.2011.08.002

    Article  Google Scholar 

  • Holdenrieder O, Pautasso M, Weisberg PJ, Lonsdale D (2004) Tree diseases and landscape processes: the challenge of landscape pathology. Trends Ecol Evol 19:446–452. https://doi.org/10.1016/j.tree.2004.06.003

    Article  PubMed  Google Scholar 

  • Huang SB (1991) Protecting citrus trees from freezing injury by use of topoclimate in China. Agric For Meteorol 55:95–108, 1991

    Article  Google Scholar 

  • IBGE (2018) Instituto Brasileiro de Geografia e Estatística. Available in: https://sidra.ibge.gov.br/pesquisa/pam/tabelas. Accessed 02 Jan 2018

  • Kayano M, Andreolli R (2007) Relations of south American summer rainfall interannual variations with the Pacific decadal oscillation. Int J Climatol 27:531–540. https://doi.org/10.1002/joc.1417

    Article  Google Scholar 

  • Lemos CF, Calbete NO (1996) Sistemas Frontais que atuaram no Brasil de 1987 a 1995. Climanálise especial, edição comemorativa de 10 anos. Available in: http://www.cptec.inpe.br/products/climanalise/cliesp10a/14.html. Accessed 07 January 2018

  • Lopes PMO, Valeriano DM (2009) Regimes of air temperature in mountain region. Revista Geográfica Acadêmica 3:57–67

    Google Scholar 

  • Marengo JA (2008) Água e mudanças climáticas. Estudos Avançados 22:83–96. https://doi.org/10.1590/S0103-40142008010200001

    Article  Google Scholar 

  • Masson VM, Ohto CT, Furtado EL, Silva AS (2007) Zoneamento climático do eucalipto no estado de São Paulo visando o controle da ferrugem. Sum Phyt 33:67

    Google Scholar 

  • Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, Jenkins J, Lindquist E, Tice H, Bauer D, Goodstein DM, Dubchak I, Poliakov A, Mizrachi E, Kullan ARK, Hussey SG, Pinard D, van der Merwe K, Singh P, van Jaarsveld I, Silva-Junior OB, Togawa RC, Pappas MR, Faria DA, Sansaloni CP, Petroli CD, Yang X, Ranjan P, Tschaplinski TJ, Ye CY, Li T, Sterck L, Vanneste K, Murat F, Soler M, Clemente HS, Saidi N, Cassan-Wang H, Dunand C, Hefer CA, Bornberg-Bauer E, Kersting AR, Vining K, Amarasinghe V, Ranik M, Naithani S, Elser J, Boyd AE, Liston A, Spatafora JW, Dharmwardhana P, Raja R, Sullivan C, Romanel E, Alves-Ferreira M, Külheim C, Foley W, Carocha V, Paiva J, Kudrna D, Brommonschenkel SH, Pasquali G, Byrne M, Rigault P, Tibbits J, Spokevicius A, Jones RC, Steane DA, Vaillancourt RE, Potts BM, Joubert F, Barry K, Pappas GJ, Strauss SH, Jaiswal P, Grima-Pettenati J, Salse J, van de Peer Y, Rokhsar DS, Schmutz J (2014) The genome of Eucalyptus grandis. Nature 510:356–362. https://doi.org/10.1038/nature13308

    Article  PubMed  CAS  Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. In: R Foundation for statistical computing, Vienna, Austria. http://www.R-project.org/. Accessed 9 Jan 2018

  • Rosenzweig C, Iglesias A, Yang XB, Epstein PR, Chivian E (2001) Climate change and extreme weather events; implications for food production, plant diseases, and pests. Global Change and Human Health 2:90–104

    Article  Google Scholar 

  • Ruiz RAR, Alfenas AC, Ferreira FA, Vale FXR (1989) Influência da temperatura, do tempo de molhamento foliar, fotoperíodo e intensidade de luz sobre a infecção de Puccinia psidii em eucalipto. Fitopatol Bras 14:55–61

    Google Scholar 

  • Scherm H, Yang XB (1995) Interannual variations in wheat rust development in China and the United States in relation to the El Niño/ southern oscillation. Phytopathology 85:970–976. https://doi.org/10.1094/Phyto-85-970

    Article  Google Scholar 

  • Silva PH, Miranda AC, Moraes ML, Furtado EL, Stape JL, Alvares CA, Sentelhas PC, Mori ES, Sebbenn AM (2013) Selecting for rust (Puccinia psidii) resistance in Eucalyptus grandis in São Paulo state, Brazil. Forest Ecol Manag 303:91–97. https://doi.org/10.1016/j.foreco.2013.04.002

    Article  Google Scholar 

  • Tommerup IC, Alfenas AC, Old KM (2003) Guava rust in Brazil–a threat to Eucalyptus and other Myrtaceae. N Z J For Sci 33:420–428

    Google Scholar 

  • Wang E, Ryley M, Meinke R (2003) Effect of climate variability on event frequency of sorghum ergot in Australia. Aust J Agric Res 54:599–611

    Article  Google Scholar 

  • Wilson JP, Gallant JC (2000) Digital Terrain Analysis. In: Terrain Analysis: Principles and Applications. John PW, Gallant JC. John Wiley & Sons, pp 1–21

    Google Scholar 

  • Xavier AC, King CW, Scanlon BR (2015) Daily gridded meteorological variables in Brazil (1980-2013). Int J Climatol 2659:2644–2659. https://doi.org/10.1002/joc.4518

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Coordination for the Improvement of Higher Education Personnel (CAPES), National Council for Scientific and Technological Development (CNPq) and São Paulo Research Foundation (FAPESP) for their financial support for the authors Rogério de Souza Nóia Júnior, Felipe Schwerz and José Lucas Safanelli, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Schwerz.

Electronic supplementary material

ESM 1

(DOCX 1235 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nóia Júnior, R.S., Schwerz, F., Safanelli, J.L. et al. Eucalyptus rust climatic risk as affected by topography and ENSO phenomenon. Australasian Plant Pathol. 48, 131–141 (2019). https://doi.org/10.1007/s13313-018-0608-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-018-0608-2

Keywords

Navigation