Advertisement

Australasian Plant Pathology

, Volume 47, Issue 6, pp 601–608 | Cite as

Deletion of VdKu80 enhances targeted gene replacement in Verticillium dahliae

  • Dianguang Xiong
  • Chenglin Deng
  • Yonglin Wang
  • Chengming TianEmail author
Original Paper
  • 93 Downloads

Abstract

Verticillium dahliae is a notorious phytopathogenic fungus and causes severe Verticillium wilt diseases worldwide. The available genomic sequence of V. dahliae has facilitated genome-wide investigation of its life cycle and disease process. However, inefficient targeted gene replacement hampers gene functional analysis of V. dahliae. Ku heterodimer genes Ku70 and Ku80 have been proved to be involved in the recognition of DNA double-strand breaks, which will reduce the rate of homologous recombination. Here, in order to improve the frequency of the homologous recombination, we identified and deleted the V. dahliae VdKu80 with bioinformatics methods and protoplast-mediated transformation, respectively. The phenotypes of VdKu80 deletion mutants, such as fungal growth, microsclerotia formation and virulence, were similar to those of the wild type strain. Remarkably, the gene replacement frequencies of two genes (VDAG_00736 and VDAG_07169 which encode the cell division control protein) were increased by about 20% with VdKu80 deletion mutant as a recipient strain compared with that of the wild type strain. The results suggest that deletion of VdKu80 triggered the enhancement of the gene replacement frequency, indicating that the ∆VdKu80 strain can be used as an efficient recipient for the targeted gene manipulation in V. dahliae.

Keywords

Verticillium dahliae VdKu80 Gene replacement 

Notes

Acknowledgments

The research was supported by the National Key Research and Development Program (2017YFD0600105) to T.C. and the National Natural Science Foundation of China (31370013) to W.Y.

References

  1. Choquer M, Robin G, Le Pêcheur P, Giraud C, Levis C, Viaud M (2008) Ku70 or Ku80 deficiencies in the fungus Botrytis cinerea facilitate targeting of genes that are hard to knock out in a wild-type context. FEMS Microbiol Lett 289(2):225–232CrossRefPubMedPubMedCentralGoogle Scholar
  2. Critchlow SE, Jackson SP (1998) DNA end-joining: from yeast to man. Trends Biochem Sci 23(10):394–398CrossRefPubMedPubMedCentralGoogle Scholar
  3. Dobinson KF, Lecomte N, Lazarovits G (1997) Production of an extracellular trypsin-like protease by the fungal plant pathogen Verticillium dahliae. Can J Microbiol 43(3):227–233CrossRefPubMedPubMedCentralGoogle Scholar
  4. Dudášová Z, Dudáš A, Chovanec M (2004) Non-homologous end-joining factors of Saccharomyces cerevisiae. FEMS Microbiol Rev 28(5):581–601CrossRefPubMedPubMedCentralGoogle Scholar
  5. Faino L, de Jonge R, Thomma BP (2012) The transcriptome of Verticillium dahliae-infected Nicotiana benthamiana determined by deep RNA sequencing. Plant Signal Behav 7(9):1065–1069.  https://doi.org/10.4161/psb.21014 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Goins CL, Gerik KJ, Lodge JK (2006) Improvements to gene deletion in the fungal pathogen Cryptococcus neoformans: absence of Ku proteins increases homologous recombination, and co-transformation of independent DNA molecules allows rapid complementation of deletion phenotypes. Fungal Genet Biol 43(8):531–544.  https://doi.org/10.1016/j.fgb.2006.02.007 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Goswami RS (2012) Targeted gene replacement in fungi using a split-marker approach. Methods Mol Biol 835:255–269.  https://doi.org/10.1007/978-1-61779-501-5_16 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Gu Y, Seidl KJ, Rathbun GA, Zhu CG, Manis JP, van der Stoep N, Davidson L, Cheng HL, Sekiguchi JM, Frank K (1997) Growth retardation and leaky SCID phenotype of Ku70-deficient mice. Immunity 7(5):653–665CrossRefPubMedPubMedCentralGoogle Scholar
  9. Guangtao Z, Hartl L, Schuster A, Polak S, Schmoll M, Wang T, Seidl V, Seiboth B (2009) Gene targeting in a nonhomologous end joining deficient Hypocrea jecorina. J Biotechnol 139(2):146–151.  https://doi.org/10.1016/j.jbiotec.2008.10.007 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  11. He Y, Liu Q, Shao Y, Chen F (2013) Ku70 and ku80 null mutants improve the gene targeting frequency in Monascus ruber M7. Appl Microbiol Biotechnol 97(11):4965–4976.  https://doi.org/10.1007/s00253-013-4851-8 CrossRefGoogle Scholar
  12. Kershaw MJ, Talbot NJ (2009) Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease. Proc Natl Acad Sci U S A 106(37):15967–15972.  https://doi.org/10.1073/pnas.0901477106 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Klimes A, Dobinson KF, Thomma BP, Klosterman SJ (2015) Genomics spurs rapid advances in our understanding of the biology of vascular wilt pathogens in the genus Verticillium. Annu Rev Phytopathol 53:181–198.  https://doi.org/10.1146/annurev-phyto-080614-120224 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Klosterman SJ, Atallah ZK, Vallad GE, Subbarao KV (2009) Diversity, pathogenicity, and management of Verticillium species. Annu Rev Phytopathol 47:39–62.  https://doi.org/10.1146/annurev-phyto-080508-081748 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Klosterman SJ, Subbarao KV, Kang S, Veronese P, Gold SE, Thomma BP, Chen Z, Henrissat B, Lee YH, Park J, Garcia-Pedrajas MD, Barbara DJ, Anchieta A, de Jonge R, Santhanam P, Maruthachalam K, Atallah Z, Amyotte SG, Paz Z, Inderbitzin P, Hayes RJ, Heiman DI, Young S, Zeng Q, Engels R, Galagan J, Cuomo CA, Dobinson KF, Ma LJ (2011) Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLoS Pathog 7(7):e1002137.  https://doi.org/10.1371/journal.ppat.1002137 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Lan X, Yao Z, Zhou Y, Shang J, Lin H, Nuss DL, Chen B (2008) Deletion of the cpku80 gene in the chestnut blight fungus, Cryphonectria parasitica, enhances gene disruption efficiency. Curr Genet 53(1):59–66.  https://doi.org/10.1007/s00294-007-0162-x CrossRefGoogle Scholar
  17. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948.  https://doi.org/10.1093/bioinformatics/btm404 CrossRefPubMedGoogle Scholar
  18. Li GC, Ouyang H, Li X, Nagasawa H, Little JB, Chen DJ, Ling CC, Fuks Z, Cordon-Cardo C (1998) Ku70: a candidate tumor suppressor gene for murine T cell lymphoma. Mol Cell 2(1):1–8CrossRefGoogle Scholar
  19. Lieber MR, Ma Y, Pannicke U, Schwarz K (2003) Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol 4(9):712–720CrossRefPubMedPubMedCentralGoogle Scholar
  20. Maor R, Puyesky M, Horwitz BA, Sharon A (1998) Use of green fluorescent protein (GFP) for studying development and fungal-plant interaction in Cochliobolus heterostrophus. Mycol Res 102(4):491–496CrossRefGoogle Scholar
  21. Mehrabi R, Ding S, Xu JR (2008) MADS-box transcription factor mig1 is required for infectious growth in Magnaporthe grisea. Eukaryot Cell 7(5):791–799.  https://doi.org/10.1128/EC.00009-08 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Neumann MJ, Dobinson KF (2003) Sequence tag analysis of gene expression during pathogenic growth and microsclerotia development in the vascular wilt pathogen Verticillium dahliae. Fungal Genet Biol 38(1):54–62.  https://doi.org/10.1016/S1087-1845(02)00507-8 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Nielsen JB, Nielsen ML, Mortensen UH (2008) Transient disruption of non-homologous end-joining facilitates targeted genome manipulations in the filamentous fungus Aspergillus nidulans. Fungal Genet Biol 45(3):165–170.  https://doi.org/10.1016/j.fgb.2007.07.003 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ninomiya Y, Suzuki K, Ishii C, Inoue H (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci U S A 101(33):12248–12253CrossRefPubMedPubMedCentralGoogle Scholar
  25. Nussenzweig A, Chen C, da Costa SV, Sanchez M, Sokol K, Nussenzweig MC, Li GC (1996) Requirement for Ku80 in growth and immunoglobulin V (D) J recombination. Nature 382(6591):551–555CrossRefPubMedPubMedCentralGoogle Scholar
  26. Pastink A, Eeken JC, Lohman PH (2001) Genomic integrity and the repair of double-strand DNA breaks. Mutat Res 480:37–50CrossRefPubMedPubMedCentralGoogle Scholar
  27. Paz Z, García-Pedrajas MD, Andrews DL, Klosterman SJ, Baeza-Montañez L, Gold SE (2011) One step construction of agrobacterium-recombination-ready-plasmids (OSCAR), an efficient and robust tool for ATMT based gene deletion construction in fungi. Fungal Genet Biol 48(7):677–684.  https://doi.org/10.1016/j.fgb.2011.02.003 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Pöggeler S, Kück U (2006) Highly efficient generation of signal transduction knockout mutants using a fungal strain deficient in the mammalian ku70 ortholog. Gene 378:1–10CrossRefPubMedPubMedCentralGoogle Scholar
  29. Qi X, Su X, Guo H, Qi J, Cheng H (2015) A ku70 null mutant improves gene targeting frequency in the fungal pathogen Verticillium dahliae. World J Microbiol Biotechnol.  https://doi.org/10.1007/s11274-015-1907-1 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Santhanam P, Thomma BP (2012) Verticillium dahliae Sge1 differentially regulates expression of candidate effector genes. Mol Plant-Microbe Interact 26(2):249–256.  https://doi.org/10.1094/mpmi CrossRefGoogle Scholar
  31. Santhanam P, Boshoven JC, Salas O, Bowler K, Islam T, Keykha Saber M, van den Berg GC, Bar-Peled M, Thomma BP (2017) Rhamnose synthase activity is required for pathogenicity of the vascular wilt fungus Verticillium dahliae. Mol Plant Pathol 18(3):347–362.  https://doi.org/10.1111/mpp.12401 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Tachibana A (2004) Genetic and physiological regulation of non-homologous end-joining in mammalian cells. Adv Biophys 38:21–44CrossRefPubMedPubMedCentralGoogle Scholar
  33. Takahashi T, Masuda T, Koyama Y (2006) Enhanced gene targeting frequency in ku70 and ku80 disruption mutants of Aspergillus sojae and Aspergillus oryzae. Mol Gen Genomics 275(5):460–470.  https://doi.org/10.1007/s00438-006-0104-1 CrossRefGoogle Scholar
  34. Tang W, Ru Y, Hong L, Zhu Q, Zuo R, Guo X, Wang J, Zhang H, Zheng X, Wang P, Zhang Z (2015) System-wide characterization of bZIP transcription factor proteins involved in infection-related morphogenesis of Magnaporthe oryzae. Environ Microbiol 17(4):1377–1396.  https://doi.org/10.1111/1462-2920.12618 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Tran VT, Braus-Stromeyer SA, Kusch H, Reusche M, Kaever A, Kuhn A, Valerius O, Landesfeind M, Asshauer K, Tech M, Hoff K, Pena-Centeno T, Stanke M, Lipka V, Braus GH (2014) Verticillium transcription activator of adhesion Vta2 suppresses microsclerotia formation and is required for systemic infection of plant roots. New Phytol 202(2):565–581.  https://doi.org/10.1111/nph.12671 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Villalba F, Collemare J, Landraud P, Lambou K, Brozek V, Cirer B, Morin D, Bruel C, Beffa R, Lebrun MH (2008) Improved gene targeting in Magnaporthe grisea by inactivation of MgKU80 required for non-homologous end joining. Fungal Genet Biol 45(1):68–75.  https://doi.org/10.1016/j.fgb.2007.06.006 CrossRefGoogle Scholar
  37. Vogel H, Lim DS, Karsenty G, Finegold M, Hasty P (1999) Deletion of Ku86 causes early onset of senescence in mice. Proc Natl Acad Sci U S A 96(19):10770–10775CrossRefPubMedPubMedCentralGoogle Scholar
  38. Walker JR, Corpina RA, Goldberg J (2001) Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412(6847):607–614CrossRefPubMedPubMedCentralGoogle Scholar
  39. Wang YL, Xiao SX, Xiong DG, Tian CM (2013) Genetic transformation, infection process and qPCR quantification of Verticillium dahliae on smoke-tree Cotinus coggygria. Australas Plant Pathol 42(1):33–41.  https://doi.org/10.1007/s13313-012-0172-0 CrossRefGoogle Scholar
  40. Wang S, Xing H, Hua C, Guo HS, Zhang J (2016) An improved single-step cloning strategy simplifies the agrobacterium tumefaciens-mediated transformation (ATMT)-based gene-disruption method for Verticillium dahliae. Phytopathology 106(6):645–652.  https://doi.org/10.1094/PHYTO-10-15-0280-R CrossRefPubMedGoogle Scholar
  41. West RB, Yaneva M, Lieber MR (1998) Productive and nonproductive complexes of Ku and DNA-dependent protein kinase at DNA termini. Mol Cell Biol 18(10):5908–5920CrossRefPubMedPubMedCentralGoogle Scholar
  42. Xiong D, Wang Y, Ma J, Klosterman SJ, Xiao S, Tian C (2014) Deep mRNA sequencing reveals stage-specific transcriptome alterations during microsclerotia development in the smoke tree vascular wilt pathogen, Verticillium dahliae. BMC Genomics 15:324.  https://doi.org/10.1186/1471-2164-15-324 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Xiong D, Wang Y, Tang C, Fang Y, Zou J, Tian C (2015) VdCrz1 is involved in microsclerotia formation and required for full virulence in Verticillium dahliae. Fungal Genet Biol 82:201–212.  https://doi.org/10.1016/j.fgb.2015.07.011 CrossRefGoogle Scholar

Copyright information

© Australasian Plant Pathology Society Inc. 2018

Authors and Affiliations

  • Dianguang Xiong
    • 1
  • Chenglin Deng
    • 1
  • Yonglin Wang
    • 1
  • Chengming Tian
    • 1
    Email author
  1. 1.The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of ForestryBeijing Forestry UniversityBeijingChina

Personalised recommendations