Australasian Plant Pathology

, Volume 47, Issue 5, pp 499–510 | Cite as

Identification of FaNBS-encoding genes responsive to Colletotrichum fructicola infection in strawberry (Fragaria ×ananassa Duchase)

  • Xiaohua Zou
  • Rong Guo
  • Liqing Zhang
  • Ke DuanEmail author
  • Qinghua GaoEmail author
Original Paper


Anthracnose caused by C. fructicola is a serious fungal disease in strawberry (Fragaria ×ananassa), but the molecular mechanism is still unclear. Here, approximately 232 FaNBS-encoding genes were identified by RNA-seq, of which 53 were specifically annotated in the Fragaria ×ananassa genome. After C. fructicola inoculation, a total of 12, 9 and 24 differentially expressed FaNBS-encoding genes were observed at 24, 72, and 96 Hpi in the Fragaria ×ananassa (cv. Jiuxiang). Furthermore, we manually annotated 40 FaNBS-encoding genes fused with other integrated domains, 27 of which are FaNBS-RPW8 fusions. Most of the RPW8 domains from the FaNBS-RPW8 fusions were conserved in the tyrosine (Y) and glycine (G) residues. Interestingly, the heatmap, Venn diagram and qRT-PCR analysis showed that the expression of an FaNBS-RPW8 fusion (mrna24117.1-v1.0-hybrid) was markedly induced at different stages after C. fructicola inoculation in the susceptible cultivar of Jiuxiang. Altogether, the results of the present study provide information from comprehensive structure and expression analyses of FaNBS-encoding genes and add insight into the molecular mechanism underlying FaNBS-RPW8-mediated resistance to C. fructicola in strawberry (Fragaria ×ananassa).


Strawberry Colletotrichum fructicola Integrated domains FaNBS-RPW8 



This work was supported by funds from National Natural Science Foundation of China (31601731), the Science and Technology Commission of Shanghai Municipality (Key Program, 16391901400), and Shanghai Municipal Agricultural Commission Project (Hu Nong Ke Zhong Zi-2017-2-1).

Author contributions

K. D & QH. G conceived this work. XH.Z designed the research and performed bioinformatics analysis. R.G performed the qRT-PCR experiment. LQ.Z guided C. fructicola pathogenicity tests. XH.Z wrote the article.

Supplementary material

13313_2018_582_MOESM1_ESM.docx (187 kb)
ESM 1 (DOCX 187 kb)
13313_2018_582_MOESM2_ESM.xlsx (159 kb)
Table S1 (XLSX 159 kb)
13313_2018_582_MOESM3_ESM.xls (36 kb)
Table S2 (XLS 36 kb)
13313_2018_582_MOESM4_ESM.xlsx (9 kb)
Table S3 (XLSX 8 kb)
13313_2018_582_MOESM5_ESM.xlsx (10 kb)
Table S4 (XLSX 10 kb)
13313_2018_582_MOESM6_ESM.xls (88 kb)
Table S5 (XLS 88 kb)


  1. Alkan N, Friedlander G, Ment D, Prusky D, Fluhr R (2015) Simultaneous transcriptome analysis of Colletotrichum gloeosporioides and tomato fruit pathosystem reveals novel fungal pathogenicity and fruit defense strategies. New Phytol 205(2):801–815CrossRefPubMedGoogle Scholar
  2. Amil-Ruiz F, Garrido-Gala J, Blanco-Portales R, Folta KM, Muñoz-Blanco J, Caballero JL (2013) Identification and validation of reference genes for transcript normalization in strawberry (Fragaria× ananassa) defense responses. PLoS One 8(8):e70603CrossRefPubMedPubMedCentralGoogle Scholar
  3. Cesari S, Bernoux M, Moncuquet P, Kroj T, Dodds PN (2014) A novel conserved mechanism for plant NLR protein pairs: the "integrated decoy" hypothesis. Front Plant Sci 5:606CrossRefPubMedPubMedCentralGoogle Scholar
  4. Clancy MA, Rosli HG, Chamala S, Barbazuk WB, Civello PM, Folta KM (2013) Validation of reference transcripts in strawberry (Fragaria spp.). Molecular genetics and genomics 288(12):671–681Google Scholar
  5. Curry KJ, Abril M, Avant JB, Smith BJ (2002) Strawberry anthracnose: histopathology of Colletotrichum acutatum and C. Fragariae. Phytopathology 92(10):1055–1063CrossRefPubMedGoogle Scholar
  6. Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411(6839):826–833CrossRefPubMedGoogle Scholar
  7. Dangl JL, Horvath DM, Staskawicz BJ (2013) Pivoting the plant immune system from dissection to deployment. Science 341(6147):746–751CrossRefPubMedGoogle Scholar
  8. Dardick C, Schwessinger B, Ronald P (2012) Non-arginine-aspartate (non-RD) kinases are associated with innate immune receptors that recognize conserved microbial signatures. Curr Opin Plant Biol 15(4):358–366CrossRefPubMedGoogle Scholar
  9. DeYoung BJ, Innes RW (2006) Plant NBS-LRR proteins in pathogen sensing and host defense. Nat Immunol 7(12):1243–1249CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11(8):539–548CrossRefPubMedGoogle Scholar
  11. Fenyk S, Townsend PD, Dixon CH, Spies GB, de San Eustaquio Campillo A, Slootweg EJ, Westerhof LB, Gawehns FK, Knight MR, Sharples GJ, Goverse A, Palsson LO, Takken FL, Cann MJ (2015) The potato nucleotide-binding leucine-rich repeat (NLR) immune receptor Rx1 is a pathogen-dependent DNA-deforming protein. J Biol Chem 290 (41):24945–24960Google Scholar
  12. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42(Database issue):D222–D230CrossRefPubMedGoogle Scholar
  13. Freeling M, Lyons E, Pedersen B, Alam M, Ming R, Lisch D (2008) Many or most genes in Arabidopsis transposed after the origin of the order Brassicales. Genome Res 18(12):1924–1937CrossRefPubMedPubMedCentralGoogle Scholar
  14. Jia Y, Yuan Y, Zhang Y, Yang S, Zhang X (2015) Extreme expansion of NBS-encoding genes in Rosaceae. BMC Genet 16:48CrossRefPubMedPubMedCentralGoogle Scholar
  15. Joshi RK, Nayak S (2013) Perspectives of genomic diversification and molecular recombination towards R-gene evolution in plants. Physiol Mol Biol Plants 19(1):1–9CrossRefPubMedGoogle Scholar
  16. Kanzaki H, Yoshida K, Saitoh H, Fujisaki K, Hirabuchi A, Alaux L, Fournier E, Tharreau D, Terauchi R (2012) Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. Plant J 72(6):894–907CrossRefPubMedGoogle Scholar
  17. Kaschani F, Shabab M, Bozkurt T, Shindo T, Schornack S, Gu C, Ilyas M, Win J, Kamoun S, van der Hoorn RA (2010) An effector-targeted protease contributes to defense against Phytophthora infestans and is under diversifying selection in natural hosts. Plant Physiol 154 (4):1794–1804Google Scholar
  18. Lozano-Duran R, Robatzek S (2015) 14-3-3 proteins in plant-pathogen interactions. Mol Plant-Microbe Interact 28(5):511–518CrossRefPubMedGoogle Scholar
  19. Maqbool A, Saitoh H, Franceschetti M, Stevenson CE, Uemura A, Kanzaki H, Kamoun S, Terauchi R, Banfield MJ (2015) Structural basis of pathogen recognition by an integrated HMA domain in a plant NLR immune receptor Elife:4Google Scholar
  20. McHale L, Tan X, Koehl P, Michelmore RW (2006) Plant NBS-LRR proteins: adaptable guards. Genome Biol 7(4):212CrossRefPubMedPubMedCentralGoogle Scholar
  21. Munch S, Lingner U, Floss DS, Ludwig N, Sauer N, Deising HB (2008) The hemibiotrophic lifestyle of Colletotrichum species. J Plant Physiol 165(1):41–51CrossRefPubMedGoogle Scholar
  22. Perazzolli M, Malacarne G, Baldo A, Righetti L, Bailey A, Fontana P, Velasco R, Malnoy M (2014) Characterization of resistance gene analogues (RGAs) in apple (Malus x domestica Borkh.) and their evolutionary history of the Rosaceae family. PLoS One 9(2):e83844CrossRefPubMedPubMedCentralGoogle Scholar
  23. Le Roux C, Huet G, Jauneau A, Camborde L, Tremousaygue D, Kraut A, Zhou B, Levaillant M, Adachi H, Yoshioka H, Raffaele S, Berthome R, Coute Y, Parker JE, Deslandes L (2015) A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity. Cell 161 (5):1074–1088Google Scholar
  24. Sahoo A, Im SH (2012) Molecular mechanisms governing IL-24 gene expression. Immune network 12(1):1–7CrossRefPubMedPubMedCentralGoogle Scholar
  25. Sarris PF, Duxbury Z, Huh SU, Ma Y, Segonzac C, Sklenar J, Derbyshire P, Cevik V, Rallapalli G, Saucet SB, Wirthmueller L, Menke FL, Sohn KH, Jones JD (2015) A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell 161(5):1089–1100CrossRefPubMedGoogle Scholar
  26. Sarris PF, Cevik V, Dagdas G, Jones JD, Krasileva KV (2016) Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens. BMC Biol 14:8CrossRefPubMedPubMedCentralGoogle Scholar
  27. Wang W, Devoto A, Turner JG, Xiao S (2007) Expression of the membrane-associated resistance protein RPW8 enhances basal defense against biotrophic pathogens. Molecular plant-microbe interactions : MPMI 20(8):966–976CrossRefPubMedGoogle Scholar
  28. Widiastuti A, Yoshino M, Saito H, Maejima K, Zhou S, Odani H, Narisawa K, Hasegawa M, Nitta Y, Sato T (2013) Heat shock-induced resistance in strawberry against crown rot fungus Colletotrichum gloeosporioides. Physiol Mol Plant Pathol 84:86–91CrossRefGoogle Scholar
  29. Williams SJ, Sohn KH, Wan L, Bernoux M, Sarris PF, Segonzac C, Ve T, Ma Y, Saucet SB, Ericsson DJ, Casey LW, Lonhienne T, Winzor DJ, Zhang X, Coerdt A, Parker JE, Dodds PN, Kobe B, Jones JD (2014) Structural basis for assembly and function of a heterodimeric plant immune receptor. Science 344(6181):299–303CrossRefPubMedGoogle Scholar
  30. Wu CH, Krasileva KV, Banfield MJ, Terauchi R, Kamoun S (2015) The "sensor domains" of plant NLR proteins: more than decoys? Front Plant Sci 6:134PubMedPubMedCentralGoogle Scholar
  31. Xie L, Zhang JZ, Wan Y, Hu DW (2010) Identification of Colletotrichum spp. isolated from strawberry in Zhejiang Province and Shanghai City, China. J Zhejiang Univ Sci B 11(1):61–70CrossRefPubMedPubMedCentralGoogle Scholar
  32. Xu F, Kapos P, Cheng YT, Li M, Zhang Y, Li X (2014) NLR-associating transcription factor bHLH84 and its paralogs function redundantly in plant immunity. PLoS Pathog 10(8):e1004312CrossRefPubMedPubMedCentralGoogle Scholar
  33. Yang X, Wang W, Coleman M, Orgil U, Feng J, Ma X, Ferl R, Turner JG, Xiao S (2009) Arabidopsis 14-3-3 lambda is a positive regulator of RPW8-mediated disease resistance. Plant J 60(3):539–550CrossRefPubMedGoogle Scholar
  34. Zhai C, Zhang Y, Yao N, Lin F, Liu Z, Dong Z, Wang L, Pan Q (2014) Function and interaction of the coupled genes responsible for Pik-h encoded rice blast resistance. PLoS One 9(6):e98067CrossRefPubMedPubMedCentralGoogle Scholar
  35. Zhang QY, Zhang LQ, Song LL, Duan K, Li N, Wang YX, Gao QH (2016) The different interactions of Colletotrichum gloeosporioides with two strawberry varieties and the involvement of salicylic acid. Horticulture research 3:16007CrossRefPubMedPubMedCentralGoogle Scholar
  36. Zhong Y, Cheng ZM (2016) A unique RPW8-encoding class of genes that originated in early land plants and evolved through domain fission, fusion, and duplication. Sci Rep 6:32923CrossRefPubMedPubMedCentralGoogle Scholar
  37. Zhong S, Joung J-G, Zheng Y, Y-r C, Liu B, Shao Y, Xiang JZ, Fei Z, Giovannoni JJ (2011) High-throughput illumina strand-specific RNA sequencing library preparation. Cold Spring Harbor protocols 2011 (8):pdb. In: prot5652Google Scholar

Copyright information

© Australasian Plant Pathology Society Inc. 2018

Authors and Affiliations

  1. 1.Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research InstituteShanghai Academy of Agricultural SciencesShanghaiChina

Personalised recommendations