Advertisement

Australasian Plant Pathology

, Volume 47, Issue 4, pp 431–447 | Cite as

Three Ganoderma species, including Ganoderma dunense sp. nov., associated with dying Acacia cyclops trees in South Africa

  • J. M. Tchotet Tchoumi
  • M. P. A. Coetzee
  • M. Rajchenberg
  • M. J. Wingfield
  • J. Roux
Original Paper

Abstract

Large numbers of Acacia cyclops trees are dying along the coastal plains of the Eastern and Western Cape Provinces of South Africa. The cause of the deaths has been attributed to a root and butt rot disease caused by the basidiomycete fungus Pseudolagarobasidium acaciicola. However, many signs (e.g. basidiomes) and symptoms reminiscent of Ganoderma root-rot are commonly associated with the dying trees. In this study, isolates collected from basidiomes resembling species of Ganoderma, as well as from root and butt samples from diseased A. cyclops trees were subjected to DNA sequencing and morphological studies to facilitate their identification. Multi-locus phylogenetic analyses and morphological characterisation revealed that three species of Ganoderma are associated with dying A. cyclops trees. These included G. destructans, a recently described species causing root-rot on trees elsewhere in South Africa. The remaining two were novel species, one of which is described here as G. dunense. The novel species is distinguished by its mucronate basidiomes, laccate shiny pileus surface, duplex context and ovoid basidiospores. Only an immature specimen was available for the second species and a name was consequently not provided for it. Interestingly, only a single isolate representing P. acaciicola was recovered in this study, suggesting that further investigations are needed to ascertain the role of each of the four basidiomycetous root-rot fungi in the death of A. cyclops trees.

Keywords

Ganodermataceae Phylogeny Pseudolagarobasidium Taxonomy Rooikrans Root rot 

Notes

Acknowledgements

We thank the Department of Science and Technology (DST), the National Research Foundation (NRF) and the International Cooperation Program (MINCYT-Argentina – DST-South Africa, SA/10/02) for funding.

References

  1. Avis AM (1989) A review of coastal dune stabilization in the Cape Province of South Africa. Landsc Urban Plan 18:55–68CrossRefGoogle Scholar
  2. Bishop KS, Kao CHJ, Xu Y, Glucina MP, Paterson RRM, Ferguson LR (2015) From 2000 years of Ganoderma lucidum to recent developments in nutraceuticals. Phytochemistry 114:56–65CrossRefPubMedGoogle Scholar
  3. Coetzee MPA, Wingfield BD, Golani GD, Tjahjono B, Gafur A, Wingfield MJ (2011) A single dominant Ganoderma species is responsible for root rot of Acacia mangium and Eucalyptus in Sumatra. South For 73:175–180CrossRefGoogle Scholar
  4. Coetzee MPA, Marincowitz S, Muthelo VG, Wingfield MJ (2015) Ganoderma species, including new taxa associated with root rot of the iconic Jacaranda mimosifolia in Pretoria, South Africa. IMA Fungus 6:249–256CrossRefPubMedPubMedCentralGoogle Scholar
  5. Crous PW, Wingfield MJ, Schumacher RK, Summerell BA, Giraldo A, Gené J, Guarro J, Wanasinghe DN, Hyde KD, Camporesi E, Garethjones EB, Thambugala KM, Malysheva EF, Malysheva VF, Acharya K, Álvarez J, Alvarado P, Assefa A, Barnes CW, Bartlett JS, Blanchette RA, Burgess TI, Carlavilla JR, Coetzee MPA, Damm U, Decock CA, Denbreeÿen A, Devries B, Dutta AK, Holdom DG, Rooney-Latham S, Manjón JL, Marincowitz S, Mirabolfathy M, Moreno G, Nakashima C, Papizadeh M, Shahzadehfazeli SA, Amoozegar MA, Romberg MK, Shivas RG, Stalpers JA, Stielow B, Stukely MJC, Swart WJ, Tan YP, Vanderbank M, Wood AR, Zhang Y, Groenewald JZ (2014) Fungal planet description sheets: 281–319. Persoonia 33:212–289CrossRefPubMedPubMedCentralGoogle Scholar
  6. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772CrossRefPubMedPubMedCentralGoogle Scholar
  7. Douanla-Meli C, Langer E (2009) Ganoderma carocalcareus sp. nov., with crumbly-friable context parasite to saprobe on Anthocleista nobilis and its phylogenetic relationship in G. resinaceum group. Mycol Prog 8:145–155CrossRefGoogle Scholar
  8. Flood J, Bridge PD, Holderness M (eds) (2000) Ganoderma diseases of perennial crops. CABI Publishing, Wallingford, p 275Google Scholar
  9. Gill AM (1985) Acacia cyclops G. Don (Leguminosae: Mimosaceae) in Australia: distribution and dispersal. J R Soc West Aust 67:59–65Google Scholar
  10. Gill W, Eyles A, Glen M, Mohammed C (2016) Structural host responses of Acacia mangium and Eucalyptus pellita to artificial infection with the root rot pathogen, Ganoderma philippii. Forest Pathol 46:369–375CrossRefGoogle Scholar
  11. Glen M, Bougher NL, Francis AA, Nigg SQ, Lee SS, Irianto R, Barry KM, Beadle CL, Mohammed CL (2009) Ganoderma and Amauroderma species associated with root-rot disease of Acacia mangium plantation trees in Indonesia and Malaysia. Australas Plant Pathol 38:345–356CrossRefGoogle Scholar
  12. Gottlieb AM, Ferrer E, Wright JE (2000) rDNA analyses as an aid to the taxonomy of species of Ganoderma. Mycol Res 104:1033–1045CrossRefGoogle Scholar
  13. Henderson L (1998) Invasive alien woody plants of the southern and southwestern cape region, South Africa. Bothalia 28:91–112CrossRefGoogle Scholar
  14. Henderson L (2007) Invasive, naturalized and casual alien plants in southern Africa: a summary based on the Southern African plant invaders atlas (SAPIA). Bothalia 37:215–248CrossRefGoogle Scholar
  15. Hong SG, Jung HS (2004) Phylogenetic analysis of Ganoderma based on nearly complete mitochondrial small-subunit ribosomal DNA sequences. Mycologia 96:742–755CrossRefPubMedGoogle Scholar
  16. Imazeki R (1952) A contribution to the fungus flora of Dutch New Guinea. Bull Gov Forest Exp Sta, Meguro. Tokyo 57:87–128Google Scholar
  17. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kauserud H, Schumacher T (2001) Outcrossing or inbreeding: DNA markers provide evidence for type of reproductive mode in Phellinus nigrolimitatus (Basidiomycota). Mycol Res 53:220–230Google Scholar
  19. Kinge TR, Mih AM (2011) Ganoderma ryvardense sp. nov. associated with basal stem rot (BSR) disease of oil palm in Cameroon. Mycosphere 2:179–188Google Scholar
  20. Kinge TR, Mih AM, Coetzee MPA (2012) Phylogenetic relationships among species of Ganoderma (Ganodermataceae, Basidiomycota) from Cameroon. Aust J Bot 60:526–538CrossRefGoogle Scholar
  21. Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi, 10th edn. CAB International, WallingfordGoogle Scholar
  22. Kotzé LJD, Wood AR, Lennox CL (2015) Risk assessment of the Acacia cyclops dieback pathogen, Pseudolagarobasidium acaciicola, as a mycoherbicide in south African strandveld and limestone fynbos. Biol Control 82:52–60CrossRefGoogle Scholar
  23. Li TH, Hu HP, Deng WQ, Wu SH, Wang DM, Tsering T (2015) Ganoderma leucocontextum, a new member of the G. lucidum complex from Southwestern China. Mycoscience 56:81–85CrossRefGoogle Scholar
  24. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees in Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA pp 1–8Google Scholar
  25. Möller EM, Bahnweg G, Sandermann H, Geiger HH (1992) A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Res 20:6115–6116CrossRefPubMedPubMedCentralGoogle Scholar
  26. Moncalvo JM, Ryvarden L (1995) Ganoderma hildebrandii, a forgotten species. Mycotaxon 56:175–180Google Scholar
  27. Moncalvo JM, Ryvarden L (1997) A nomenclatural study of the Ganodermataceae Donk. Synopsis Fungorum 11. Fungiflora, OsloGoogle Scholar
  28. Park Y, Kwon O, Son E, Yoon D, Han W, Yoo Y, Lee C (2012) Taxonomy of Ganoderma lucidum from Korea based on rDNA and partial β-tubulin gene sequence analysis. Mycobiology 40:71–75CrossRefPubMedPubMedCentralGoogle Scholar
  29. Paterson RRM (2007) Ganoderma disease of oil palm-a white rot perspective necessary for integrated control. Crop Prot 26:1369–1376CrossRefGoogle Scholar
  30. Ramasamy S (1972) Cross-infectivity and decay ability of Ganoderma species parasitic to rubber, oil palm and tea. In: Ganoderma diseases of perennial crops. Flood J, Bridge PD and Holderness M, 2000. CABI, Wallingford, UKGoogle Scholar
  31. Reid DA (1973) A reappraisal of type and authentic specimens of Basidiomycetes in the van der Byl herbarium, Stellenbosch. S Afr J Bot 39:141–178Google Scholar
  32. Reid DA (1974) A reappraisal of type and authentic material of the larger Basidiomycetes in the Pretoria Herbarium. Bothalia 11:221–230CrossRefGoogle Scholar
  33. Reid DA (1975) Type studies of the larger Basidiomycetes described from southern Africa. Contributions from the Bolus Herbarium 7:1–255Google Scholar
  34. Richter C, Wittstein K, Kirk P, Stadler M (2015) An assessment of the taxonomy and chemotaxonomy of Ganoderma. Fungal Divers 71:1–15CrossRefGoogle Scholar
  35. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ryvarden L, Melo I (2014) Poroid fungi of Europe. Synopsis Fungorum 31:1–455Google Scholar
  37. Shackleton CM, McConnachie M, Chauke MI, Mentz J, Sutherland F, Gambiza J, Jones R (2006) Urban fuelwood demand and markets in a small town in South Africa: livelihood vulnerability and alien plant control. Int J Sustain Dev World Ecol 13:481–491CrossRefGoogle Scholar
  38. Silvestro D, Michalak I (2012) raxmlGUI: a graphical front-end for RAxML. Org Divers Evol 12:335–337CrossRefGoogle Scholar
  39. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690CrossRefPubMedGoogle Scholar
  40. Steyaert RL (1961) Genus Ganoderma (Polyporaceae) taxa nova — I. In Bulletin du Jardin Botanique de l'État à Bruxelles 31:69–83CrossRefGoogle Scholar
  41. Steyaert RL (1962) Genus Ganoderma (Polyporaceae) taxa nova—2. In Bull du Jard Bot Natl Belgique 32:89–104CrossRefGoogle Scholar
  42. Steyaert RL (1967) Les Ganoderma palmicoles. Bull du Jard Bot Natl Belgique 37:465–492CrossRefGoogle Scholar
  43. Steyaert RL (1972) Species of Ganoderma and related genera mainly of the Bogor and Leiden Herbaria. Persoonia 7:55–118Google Scholar
  44. Steyaert RL (1980) Study of some Ganoderma species. Bull du Jard Bot Natl Belgique 50:135–186CrossRefGoogle Scholar
  45. Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, SunderlandGoogle Scholar
  46. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA 5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  47. Taylor H (1969) Pest plants and nature conservation in the winter rainfall region. J Bot Soc South Africa 55:32–35Google Scholar
  48. Van der Bijl PA (1921) A contribution to our knowledge of the Polyporeae of South Africa. S Afr J Sci 18:246–293Google Scholar
  49. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322Google Scholar
  50. Wood AR, Ginns J (2006) A new dieback disease of Acacia cyclops in South Africa caused by Pseudolagarobasidium acaciicola sp. nov. Can J Bot 84:750–758CrossRefGoogle Scholar
  51. Worrall JJ (1991) Media for selective isolation of hymenomycetes. Mycologia 83:296–202CrossRefGoogle Scholar
  52. Xing JH, Song J, Decock C, Cui BK (2016) Morphological characters and phylogenetic analysis reveal a new species within the Ganoderma lucidum complex from South Africa. Phytotaxa 266:115–124CrossRefGoogle Scholar
  53. Zhou LW, Cao Y, Wu SH, Vlasák J, Li DW, Li MJ, Dai YC (2015) Global diversity of the Ganoderma lucidum complex (Ganodermataceae, Polyporales) inferred from morphology and multilocus phylogeny. Phytochemistry 114:7–15CrossRefPubMedGoogle Scholar

Copyright information

© Australasian Plant Pathology Society Inc. 2018

Authors and Affiliations

  1. 1.Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences (NAS)University of PretoriaPretoriaSouth Africa
  2. 2.Centro de Investigacion y Estension Forestal Andino PatagonicoEsquelArgentina
  3. 3.Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences (NAS)University of PretoriaPretoriaSouth Africa

Personalised recommendations